首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5118篇
  免费   246篇
  国内免费   28篇
化学   3942篇
晶体学   46篇
力学   71篇
数学   400篇
物理学   933篇
  2023年   38篇
  2022年   91篇
  2021年   109篇
  2020年   88篇
  2019年   95篇
  2018年   74篇
  2017年   71篇
  2016年   177篇
  2015年   143篇
  2014年   178篇
  2013年   314篇
  2012年   360篇
  2011年   441篇
  2010年   255篇
  2009年   249篇
  2008年   354篇
  2007年   289篇
  2006年   293篇
  2005年   227篇
  2004年   205篇
  2003年   178篇
  2002年   212篇
  2001年   102篇
  2000年   106篇
  1999年   61篇
  1998年   39篇
  1997年   51篇
  1996年   46篇
  1995年   35篇
  1994年   27篇
  1993年   32篇
  1992年   39篇
  1991年   23篇
  1990年   31篇
  1989年   31篇
  1988年   15篇
  1987年   16篇
  1986年   14篇
  1985年   27篇
  1984年   23篇
  1983年   16篇
  1982年   18篇
  1981年   11篇
  1980年   13篇
  1979年   10篇
  1978年   15篇
  1977年   19篇
  1976年   12篇
  1975年   11篇
  1970年   17篇
排序方式: 共有5392条查询结果,搜索用时 15 毫秒
11.
A new chemiluminescence method for the determination of carbamazepine (CBZ) has been developed. The method is based on the chemiluminescence produced in the reaction of tris(2,2'-bipyridine)ruthenium(III) and CBZ in an acidic medium. The chemiluminescence intensity was enhanced by organic solvents in the reaction system. Under the optimum experimental conditions, the calibration curve was linear over the range 4.0 x 10(-3)-8.6 x 10(-7) mol/L for CBZ. The detection limit (S/N = 3) was 2.5 x 10(-7) mol/L and the relative standard deviation of six replicate measurements was 2.6% for 4.0 x 10(-4) mol/L of CBZ. The possible reaction mechanism were also discussed. The chemiluminescence method was successfully applied to assay the CBZ contents in pharmaceutical tablets.  相似文献   
12.
Mesoporous polymer microspheres with gold (Au) nanoparticles inside their pores were prepared considering their surface functionality and porosity. The Au/polymer composite microspheres prepared were characterized by transmission electron microscope (TEM), X‐ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) techniques. The results showed that the adsorption of Au nanoparticles could be increased by imparting the pore structure and surface‐functional groups into the supporting polymer microspheres (in this study, poly (ethylene glycol dimethacrylate‐co‐acrylonitrile) and poly (EGDMA‐co‐AN) system). Above all, from this study, it was established that the porosity of the polymer microspheres is the most important factor that determines the distribution and adsorption amount of face‐centered cubic (fcc) Au nanoparticles in the final products. Our study showed that the continuous adsorption of Au nanoparticles with the aid of the large surface area and surface interaction sites formed more favorably the Au/polymer composite microspheres. The BET measurements of Au/poly(EGDMA‐co‐AN) composite microspheres reveals that the adsorption of Au nanoparticles into the pores kept the pore structure intact and made it more porous. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5627–5635, 2004  相似文献   
13.
In hematological diseases the composition of red bone marrow shows alterations. The relaxation timesT 1 andT 2 of water and lipids in human hemopoietic bone marrow of 14 normal volunteers and 10 patients with acute leukemia and bone marrow carcinosis are determined using a double spin echo spectroscopy sequencein vivo. The volumes of interest (VOI) of (13 mm)3 in the center of vertebral bodies are examined using different measurement parameters. ForT 1 measurements an inversion-recovery method is used.T 2 is evaluated from spectra with differentTE. T 1 (water) is found in a range between 1000 and 1700 ms,T 1 (lipids) in a range between 260 and 320 ms in healthy volunteers.T 2 (water) is determined between 32 and 65 ms. In some cases phase distortions of the water signals occur in the spectra. Water flow within the VOI may be a possible reason.T 2 (lipids) is evaluated between 73 and 91 ms. The patients with acute leukemia exhibit clearly reduced lipid signals in their spectra. Lipid relaxation times could not be determined in these cases.T 2 (water) is prolonged in acute leukemia to 51–98 ms.T 1 (water) was not significantly different from values of healthy volunteers in our measurements. Results are discussed in comparison to relaxometric data from imaging and STEAM spectroscopic methods of other authors.  相似文献   
14.
15.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   
16.
The concept of crystallization dynamics method evaluating the miscibility of binary blend system including crystalline component was proposed. Three characteristic rates, nucleation, crystal growth rates (N*, G*) and growth rate of conformation (G c*) were used to evaluate the miscibility of PVDF/at-PMMA and PVDF/iso-PMMA by the simultaneous DSC-FTIR. N*, G* and G c* depended remarkably on both temperature and blend fraction (ϕPMMA) for PVDF/at-PMMA system, which indicated the miscible system. PVDF/iso-PMMA showed small ϕPMMA dependency of N*, G* and G c*, was estimated the immiscible system. The ΔT/T m0 values, corresponding to Gibbs energy required to attend the constant G* and G c*, evaluated from G* and G c* showed the good linear relationships with different slope. The experimental results suggested that the concentration fluctuation existed in PVDF/iso-PMMA system.  相似文献   
17.
Epitaxial Ti0.97Co0.03O2:Sb0.01(TCO:Sb) films were deposited on R-Al2O3 (1 1 0 2) substrates at 500 °C in various deposition pressures by pulsed laser deposition. The solubility of cobalt within the films increases with decreasing deposition pressure at a deposition temperature of 500 °C. The TCO:Sb films deposited at 5×10−6 Torr exhibit a p-type anomalous Hall effect having a hole concentration of 6.1×1022/cm3 at 300 K. On the other hand, films deposited at 4×10−4 Torr exhibits an n-type anomalous Hall effect having an electron concentration of about 1.1×1021/cm3. p- or n-type DMS characteristics depends on the change of the structure of TCO:Sb films and the solubility of Co is possible by controlling the deposition pressure.  相似文献   
18.
The evaluation of a badge-type diffusive sampler for measuring formaldehyde using 3-methyl-2-benzothiazolinone hydrazone (MBTH) was investigated. On average, the formaldehyde concentration in blanks was reduced by approximately 31% by cleaning procedures. The cleaning techniques did not significantly differ in effectiveness. The maximum sampling rate was 22.4 +/- 3.5 mL min(-1) at MBTH concentrations of 0.05%. The formaldehyde concentration in blanks did not appreciably increase over a period of about 1 month at room temperature, and was 0.36 +/- 0.03 microg, with a relative standard deviation of 8%. The diffusive sampler had good precision and accuracy for measuring formaldehyde in indoor environments. For a 24-h exposure time, the limits of detection and quantification calculated with the field blanks were 9.7 and 13.8 ppb, respectively. The minimum exposure times were calculated based on the measured and calculated limits of quantification, the sampling rate, and the atmospheric formaldehyde concentration. The capacity of the diffusive sampler with 0.5% MBTH was 3 ppm h(-1), approximately 1.5-times the capacity when the MBTH concentrations were 0.05%.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号