首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   5篇
  国内免费   2篇
化学   156篇
晶体学   3篇
力学   6篇
数学   32篇
物理学   36篇
  2022年   3篇
  2021年   6篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   19篇
  2007年   11篇
  2006年   13篇
  2005年   17篇
  2004年   17篇
  2003年   8篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有233条查询结果,搜索用时 15 毫秒
51.
Crude palm oil contains 600 to 1000 ppm of tocols in the form of tocopherols and tocotrienols. These palm tocols have been isolated and analyzed in the past by various chromatographic techniques such as open column chromatography, high-performance liquid chromatography, as well as thin-layer chromatography. Supercritical fluid chromatography (SFC) has emerged as a more advanced chromatographic technique in recent years. The tocols present in palm oil are successfully isolated using SFC. Identification of these tocols is supported by various spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectrometry.  相似文献   
52.
We report a novel technique for manufacturing polymeric microparticles containing biocatalysts by the behavior of immiscible liquids in microfluidic systems and in situ photopolymerization. The approach utilizes a UV-polymerizable hydrogel/enzyme solution and an immiscible oil solution. The oil and hydrogel solutions form emulsions in pressure-driven flow in microchannels at high values of the dimensionless capillary number (Ca). The resultant hydrogel droplets are then polymerized in situ via exposure to 365 nm UV light. This technique allows for the generation of monodisperse particles whose size can be controlled by the regulation of flow rates. In addition, both manufacturing microparticles and immobilizing biocatalysts can be performed simultaneously and continuously.  相似文献   
53.
A series of bidentate pyridine‐functionalized palladium N‐heterocyclic carbene (Pd NHC) complexes with various wingtip substituents (R = methyl, phenyl and tert‐butyl) have been synthesized and evaluated for their potential biomedical applications as antimicrobials and antiproliferative drug candidates. The obtained Pd NHC complexes were applied in a standard broth microdilution assay for determination of their antimicrobial activities against thirteen strains of pathogenic microorganisms. In addition to that, cytotoxic activities of the Pd NHC complexes were also evaluated against three human cancer cell lines, namely breast (MCF‐7), colon (HCT116) and oral (H103) cancer cells, using a standard MTT assay. Upon coordination to palladium, the Pd NHC complexes show significant antimicrobial activities with minimum inhibitory concentrations in the micromolar range, and they are cytotoxic to the tested carcinomas with IC50 ranging from 13 to 38 μM. Evidences for influence of both wingtip substituents and optical isomerism on the biological activities of the complexes have been found.  相似文献   
54.
55.
In general, this new equation is significant for designing and operating a pipeline to predict flow discharge. In order to predict the flow discharge, accurate determination of the flow loss due to pipe friction is very important. However, existing pipe friction coefficient equations have difficulties in obtaining key variables or those only applicable to pipes with specific conditions. Thus, this study develops a new equation for predicting pipe friction coefficients using statistically based entropy concepts, which are currently being used in various fields. The parameters in the proposed equation can be easily obtained and are easy to estimate. Existing formulas for calculating pipe friction coefficient requires the friction head loss and Reynolds number. Unlike existing formulas, the proposed equation only requires pipe specifications, entropy value and average velocity. The developed equation can predict the friction coefficient by using the well-known entropy, the mean velocity and the pipe specifications. The comparison results with the Nikuradse’s experimental data show that the R2 and RMSE values were 0.998 and 0.000366 in smooth pipe, and 0.979 to 0.994 or 0.000399 to 0.000436 in rough pipe, and the discrepancy ratio analysis results show that the accuracy of both results in smooth and rough pipes is very close to zero. The proposed equation will enable the easier estimation of flow rates.  相似文献   
56.

In his first two letters to G. H. Hardy and in his notebooks, Ramanujan recorded many theorems about the Rogers-Ramanujan continued fraction. In his lost notebook, he offered several further assertions. The purpose of this paper is to provide proofs for many of the claims about the Rogers-Ramanujan and generalized Rogers-Ramanujan continued fractions found in the lost notebook. These theorems involve, among other things, modular equations, transformations, zeros, and class invariants.  相似文献   

57.
Of the many types of catalysis involving two or more catalysts, synergistic catalysis is of great interest because novel reactions or reaction pathways may be discovered when there is synergy between the catalysts. Herein, we describe a synergistic cascade catalysis, in which immobilized Au/Pd bimetallic nanoparticles and Lewis acids work in tandem to achieve the N-alkylation of primary amides to secondary amides with alcohols via hydrogen autotransfer. When Au/Pd nanoparticles were used with metal triflates, a significant rate acceleration was observed, and the desired secondary amides were obtained in excellent yields. The metal triflate is thought to not only facilitate the addition of primary amides to aldehydes generated in situ, but also enhance the returning of hydrogen from nanoparticles to hydrogen-accepting intermediates. This resulted in a more rapid turnover of the nanoparticle catalyst, and ultimately translated into an increase in the overall rate of the reaction. The two catalysts in this co-catalytic system work in a synergistic and cascade fashion, resulting in an efficient hydrogen autotransfer process.  相似文献   
58.
In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.  相似文献   
59.
This article discusses the determination of risk capital based on “aversion” functions. Aversion functions weigh different outcomes according to perceived severity. Many practical and popular risk measures are usefully viewed in terms of aversion functions including those arising from distortion operators and risk margin loadings. The approach of this paper builds on, unifies, and extends existing disparate approaches discussed in the literature. Analytical and computer generated illustrations are given as well as suggestions for the practical determination of aversion functions.  相似文献   
60.
The fluorescence excitation (jet cooled), single vibrational level fluorescence, and the ultraviolet absorption spectra of coumaran associated with its S1(pi,pi*) electronic excited state have been recorded and analyzed. The assignment of more than 70 transitions has allowed a detailed energy map of both the S0 and S1 states of the ring-puckering (nu45) vibration to be determined in the excited states of nine other vibrations, including the ring-flapping (nu43) and ring-twisting (nu44) vibrations. Despite some interaction with nu43 and nu44, a one-dimensional potential energy function for the ring puckering very nicely predicts the experimentally determined energy level spacings. In the S1(pi,pi*) state coumaran is quasiplanar with a barrier to planarity of 34 cm(-1) and with energy minima at puckering angles of +/-14 degrees. The corresponding ground state (S0) values are 154 cm(-1) and +/-25 degrees . As is the case with the related molecules indan, phthalan, and 1,3-benzodioxole, the angle strain in the five-membered ring increases upon the pi-->pi* transition within the benzene ring and this increases the rigidity of the attached ring. Theoretical calculations predict the expected increases of the carbon-carbon bond lengths of the benzene ring in S1, and they predict a barrier of 21 cm(-1) for this state. The bond length increases at the bridgehead carbon-carbon bond upon electron excitation to the S1(pi,pi*) state give rise to angle changes which result in greater angle strain and a nearly planar molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号