首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2161篇
  免费   129篇
  国内免费   10篇
化学   1671篇
晶体学   20篇
力学   45篇
数学   209篇
物理学   355篇
  2024年   1篇
  2023年   6篇
  2022年   29篇
  2021年   49篇
  2020年   38篇
  2019年   56篇
  2018年   37篇
  2017年   36篇
  2016年   102篇
  2015年   72篇
  2014年   111篇
  2013年   210篇
  2012年   189篇
  2011年   175篇
  2010年   130篇
  2009年   108篇
  2008年   120篇
  2007年   118篇
  2006年   124篇
  2005年   106篇
  2004年   83篇
  2003年   80篇
  2002年   102篇
  2001年   39篇
  2000年   28篇
  1999年   24篇
  1998年   17篇
  1997年   15篇
  1996年   16篇
  1995年   10篇
  1994年   13篇
  1993年   5篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   7篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有2300条查询结果,搜索用时 31 毫秒
101.
Direct evidence for the blue luminescence of gold nanoclusters encapsulated inside hydroxyl‐terminated polyamidoamine (PAMAM) dendrimers was provided by spectroscopic studies as well as by theoretical calculations. Steady‐state and time‐resolved spectroscopic studies showed that the luminescence of the gold nanoclusters consisted largely of two electronic transitions. Theoretical calculations indicate that the two transitions are attributed to the different sizes of the gold nanoclusters (Au8 and Au13). The luminescence of the gold nanoclusters was clearly distinguished from that of the dendrimers.  相似文献   
102.
Melanocytes are unique cells that produce specific melanin-containing intracellular organelles called melanosomes. Melanosomes are transported from the perinuclear area of melanocytes toward the plasma membrane as they become more melanized in order to increase skin pigmentation. In this vesicular trafficking of melanosomes, Rab27a, melanophilin, and myosin Va play crucial roles in linking melanosomes to actin-based motors. To identify novel compounds to inhibit binding interface between Rab27a and melanophilin, a pharmacophore model was built based on a modeled 3D structure of the protein complex that describes the essential binding residues in the intermolecular interaction. A pharmacophore model was employed to screen a chemical library database. Finally, 25 virtual hits were selected for biological evaluations. The biological activities of 11 analogues were evaluated in a second assay. Two compounds were identified as having concentration-dependent inhibitory activity. By analyzing structure–activity relationships of derivatives of BMD-20, two hydroxyl functional groups were found to be critical for blocking the intermolecular binding between Rab27a and melanophilin.  相似文献   
103.
Methylated cyclosophoraoses (M-Cys) were synthesized by reaction using dimethyl sulfate with native Cys (unbranched cyclic β-1,2-d-glucans) isolated from Rhizobium leguminosarum biovar viciae VF-39. Its structure was proven using nuclear magnetic resonance (1H NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Based on the enhanced hydrophobicity by methylation of Cys, we investigated the inclusion property with the water-insoluble flavonoid, galangin, through a phase solubility study using ultraviolet–visible spectroscopy. The solubility of galangin was enhanced 5.6-fold according to the added concentrations (1 mM) of M-Cys, compared to the 1.9-fold and 3.4-fold enhancements by β-Cyclodextrin (β-CD) and heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), respectively. M-Cys was also shown to have the highest binding constant (5,534 M?1) with galangin among the tested host molecules (β-CD, DM-β-CD, Cys, and M-Cys). From this result, we can infer that the complex of galangin with M-Cys is more stable than any of the other host molecules. The continuous variation method showed that the galangin/M-Cys complex was suitable for 1:1 stoichiometry. The formation of the complex was confirmed with 1H NMR, FT-IR, differential scanning calorimetry, and scanning electron microscopy. Furthermore, the hypothetical molecular model of 1:1 galangin/M-Cys complex was suggested by molecular docking simulations. The cytotoxicity to the human cervical adenocarcinoma cell lines was enhanced by the galangin/M-Cys complex compared with free galangin. The obtained results indicate that M-Cys can be utilized as an effective complexing agent for galangin.  相似文献   
104.
The application of aziridines as nonvulnerable mechanophores is reported. Upon exposure to a mechanical force, stereochemically pure nonactivated aziridines incorporated into the backbone of a macromolecule do not undergo cistrans isomerization, thus suggesting retention of the ring structure under force. Nonetheless, aziridines react with a dipolarophile and seem not to obey conventional reaction pathways that involve C−C or C−N bond cleavage prior to the cycloaddition. Our work demonstrates that a nonvulnerable chemical structure can be a mechanophore.  相似文献   
105.
106.
Herein, we report the development of an 18F‐labeled, activity‐based small‐molecule probe targeting the cancer‐associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18F radionuclide incorporation required for PET imaging. The resulting molecule, [18F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000‐fold selectivity relative to other serine hydrolases. [18F]JW199 displays rapid, NCEH1‐dependent accumulation in mouse tissues. Finally, we demonstrate that [18F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple‐negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.  相似文献   
107.
In the present study, we investigated the molecular mechanisms of adenosine for its hair growth promoting effect. Adenosine stimulated the Wnt/β-catenin pathway by modulating the activity of Gsk3β in cultured human dermal papilla cells. It also activated adenosine receptor signaling, increasing intracellular cAMP level, and subsequently stimulating the cAMP mediated cellular energy metabolism. The phosphorylation of CREB, mTOR, and GSK3β was increased. Furthermore, the expression of β-catenin target genes such as Axin2, Lef1, and growth factors (bFGF, FGF7, IGF-1) was also enhanced. The inhibitor study data conducted in Wnt reporter cells and in cultured human dermal papilla cells demonstrated that adenosine stimulates Wnt/β-catenin signaling through the activation of the adenosine receptor and Gsk3β plays a critical role in transmitting the signals from the adenosine receptor to β-catenin, possibly via the Gαs/cAMP/PKA/mTOR signaling cascade.  相似文献   
108.
Prasiola japonica possesses several biological activities. However, reports on the anti-inflammatory activities and molecular mechanisms of its different solvent fractions remain limited. In this study, we investigated the potential anti-inflammatory activities of P. japonica ethanol extract (Pj-EE) and four solvent fractions of Pj-EE made with hexane (Pj-EE-HF), chloroform (Pj-EE-CF), butanol (Pj-EE-BF), or water (Pj-EE-WF) in both in vitro (LPS-induced macrophage-like RAW264.7 cells) and in vivo (carrageenan-induced acute paw edema mouse models) experiments. The most active solvent fraction was selected for further analysis. Various in vitro and in vivo assessments, including nitric oxide (NO), cytokines, luciferase assays, real-time polymerase chain reactions, and immunoblotting analyses were performed to evaluate the underlying mechanisms. In addition, the phytochemical constituents were characterized by Liquid chromatography-tandem mass spectrometry. In in vitro studies, the highest inhibition of NO production was observed in Pj-EE-CF. Further examination revealed that Pj-EE-CF decreased the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells and suppressed subsequent AP-1-luciferase activity by inhibition of phosphorylation events in the AP-1 signaling pathway. Pj-EE-CF treatment also demonstrated the strongest reduction in thickness and volume of carrageenan-induced paw edema, while Pj-EE-BF showed the lowest activity. Furthermore, Pj-EE-CF also reduced gene expression and cytokines production in tissue lysates of carrageenan-induced paw edema. These findings support and validate the evidence that Pj-EE, and especially Pj-EE-CF, could be a good natural source for an anti-inflammatory agent that targets the AP1 pathway.  相似文献   
109.
2,4-Hexadiyn-1,6-diol (HDO) was polymerized on glass and silicon plates by chemical vapor deposition without transition metal catalysis to form homogeneous thin films. Structural properties of the films were investigated by FT-IR, UV-visible, Raman, x-ray diffraction, and XPS spectroscopic analyses. The structure of CVD-polymerized HDO (CVD-PHDO) films was different from that of metathesis polymerized HDO (metathesis-PHDO), showing a polyacene-based structure but no polyene structure with acetylenic side groups. © 1996 John Wiley & Sons, Inc.  相似文献   
110.
The use of hydrazine-catalyzed ring-closing carbonyl–olefin metathesis (RCCOM) to synthesize polycyclic heteroaromatic (PHA) compounds is described. In particular, substrates bearing Lewis basic functionalities such as pyridine rings and amines, which strongly inhibit acid catalyzed RCCOM reactions, are shown to be compatible with this reaction. Using 5 mol% catalyst loadings, a variety of PHA structures can be synthesized from biaryl alkenyl aldehydes, which themselves are readily prepared by cross-coupling.

Hydrazine catalysis enables the ring-closing carbonyl–olefin metathesis (RCCOM) to form polycyclic heteroaromatics, especially those with basic functionality.

Polycyclic heteroaromatic (PHA) structures comprise the core framework of many valuable compounds with a diverse range of applications (Fig. 1A).1 For example, polycyclic azines (e.g. quinolines) are embedded in many alkaloid natural products, including diplamine2 and eupolauramine3 to name just a few. These types of structures are also of interest for their biological activity, such as with the inhibitor of the Src-SH3 protein–protein interaction shown in Fig. 1A.4 Many nitrogenous PHAs are also useful as ligands for transition metal catalysis, as exemplified by the widely used ligand 1,10-phenanthroline.5 Meanwhile, chalcogenoarenes6 such as dinaphthofuran7 and benzodithiophene8 have attracted high interest for both their medicinal properties9 and especially for their potential use as organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic field-effect transistors (OFETs).10 These and numerous other examples have inspired the development of a wide variety of strategies to construct PHAs.1,11–14 Although these approaches are as varied as the structures they target, the wide range of molecular configurations within PHA chemical space and the challenges inherent in exerting control over heteroatom position and global structure make novel syntheses of these structures a topic of continuing interest.Open in a separate windowFig. 1(A) Examples of PHAs. (B) RCCOM strategy for PHA synthesis. (C) Lewis base inhibition for Lewis acid vs. hydrazine catalyzed RCCOM. (D) Hydrazine-catalyzed RCCOM for PHA synthesis.One potentially advantageous strategy for PHA synthesis is the use of ring-closing carbonyl–olefin metathesis15 (RCCOM) to forge one of the PHA rings, starting from a suitably disposed alkenyl aldehyde precursor 2 that can be easily assembled by cross-coupling (Fig. 1B). In related work, the application of RCCOM to form polycyclic aromatic hydrocarbons (PAHs) was reported by Schindler in 2017.16 In this case, 5 mol% FeCl3 catalyzed the metathesis of substrates to form phenanthrenes and related compounds in high yields at room temperature. This method was highly attractive for its efficiency, its use of an earth-abundant metal catalyst, and the production of benign acetone as the only by-product. Nevertheless, one obvious drawback to the use of Lewis acid activation is that the presence of any functionality that is significantly more Lewis basic than the carbonyl group can be expected to strongly inhibit these reactions (Fig. 1C). Such a limitation thus renders this method incompatible with a wide swath of complex molecules, especially PHAs comprised of azine rings. This logic argues for a mechanistically orthogonal RCCOM approach that allows for the synthesis of PHA products with a broader range of ring systems and functional groups.We have developed an alternative approach to catalytic carbonyl–olefin metathesis that makes use of the condensation of 1,2-dialkylhydrazines 5 with aldehydes to form hydrazonium ions 6 as the key catalyst–substrate association step.17–19 This interaction has a much broader chemoorthogonality profile than Lewis acid–base interactions and should thus be much less prone to substrate inhibition than acid-catalyzed approaches. In this Communication, we demonstrate that hydrazine-catalyzed RCCOM enables the rapid assembly of PHAs bearing basic functionality (Fig. 1D).For our optimization studies, we chose biaryl pyridine aldehyde 7 as the substrate (20 salt 11 was also productive (entry 2), albeit somewhat less so. Notably, iron(iii) chloride generated no conversion at either ambient or elevated temperatures (entries 3 and 4). Trifluoroacetic acid (TFA) was similarly ineffective (entry 5). Meanwhile, a screen of various solvents revealed that, while the transformation could occur in a range of media (entries 6–9), THF was optimal. Finally, by raising the temperature to 90 °C (entry 10) or 100 °C (entry 11), up to 96% NMR yield (85% isolated yield) of adduct 8 could be obtained in the same time period.Optimization studiesa
EntryCatalystSolventTemp. (°C)8 yield (%)
110THF8067
211THF8053
3FeCl3DCErt0
4FeCl3DCE800
5TFATHF800b
610i-PrOH8031
710CH3CN8028
810EtOAc8026
910Toluene8024
1010THF9087
1110THF10096c
Open in a separate windowaConditions: substrate 8 (0.2 mmol) and 5 mol% catalyst in 0.4 mL of solvent (0.5 M) in a 5 mL sealed tube were heated to the temperature indicated for 15 h. Yields were determined by 1H NMR using CH2Br2 as an internal standard.b2 equiv. of TFA was used.c85% isolated yield.Using the optimized conditions, we explored the synthesis of various PHAs (Fig. 2). In addition to benzo[h]isoquinoline (8), products 12 and 13 with fluorine substitution at various positions could be generated in good yields. Similarly, benzoisoquinolines 14 and 15 bearing electron-donating methoxy groups and the dioxole-fused product 16 were also accessed efficiently. Furthermore, a phenolic ether product 17 with a potentially acid-labile N-Boc group was generated in modest yield. We found that an even more electron-donating dimethylamino group was also compatible with this chemistry, allowing for the production of 18 in 68% yield. On the other hand, adduct 19 bearing a strongly electron-withdrawing trifluoromethyl group was isolated in only modest yield. The naphtho-fused isoquinoline 20 could be generated as well; however, 20 mol% catalyst was required to realize a 35% yield. The thiophene-fused product 21 was furnished in much better yield, also with the higher catalyst loading. Although not a heterocyclic system, we found that the reaction to form phenanthrene (22) was well-behaved, providing that compound in 83% yield. In addition, an amino-substituted phenanthrene 23 was also formed in good yield. Other thiophene-containing PAHs such as 24–26 were produced efficiently. On the other hand, adduct 27 was generated only in low yield. Naphthofuran (28), which is known to have antitumor and oestrogenic properties,21 was synthesized in good yield. Finally, pharmaceutically important structures such as benzocarbazole2229 and naphthoimidazole2330 could be accessed in moderate yields with increased catalyst loading.Open in a separate windowFig. 2Substrate scope studies for hydrazine 1-catalyzed RCCOM synthesis of polycyclic heteroaromatics. a Conditions: substrate and catalyst 1·(TFA)2 (5 mol%) in THF (0.5 M) were heated to 100 °C in a 5 mL sealed tube for 15 h. Yields were determined on purified products. b 20 mol% catalyst.We also examined the scope of the olefin substitution pattern (
EntrySubstrateTime (h)Yield (%)
1 1596
2 485
3b 4827
4 4854
5 4864
Open in a separate windowaConditions: 5 mol% 10 in THF (0.5 M) in a 5 mL sealed tube were heated to the temperature indicated for 15–48 h. Conversions and yields were determined by 1H NMR using CH2Br2 as an internal standard.bMixture of E/Z (2 : 1) isomers.The vinyl substrate 31 led to very little desired product (entry 2), while the propenyl substrate 32 (2 : 1 mixture of E and Z isomers) was somewhat improved but still low-yielding (entry 3). Finally, styrenyl substrates 33 and 34 (entries 4 and 5) led to improved yields relative to 31 and 32, with the cis isomer 34 being slightly more efficient (entry 5).In order to better understand the facile nature of this RCCOM reaction, we conducted DFT calculations for each step of the proposed reaction pathway (Fig. 3A). Condensation of the substrate 7 with [2.2.1]-hydrazinium 10 to afford the hydrazonium Z-35 was found to be exergonic by −13 kcal mol−1. Isomerization of Z-35 to E-35 comes at a cost of ∼3 kcal mol−1, but the total activation energy for cycloaddition (cf.36), taking into account this isomerization, was still relatively modest at only +21.0 kcal mol−1 with an overall exergonicity of −11.1 kcal mol−1. The energetic change for proton transfer in the conversion of cycloadduct 37a to the cycloreversion precursor 37b was negligible (+1.2 kcal mol−1). Interestingly, including the proton migration step, the cumulative energy barrier for cycloreversion 38 was found to be only +21.7 kcal mol−1, nearly the same as for the cycloaddition. Undoubtedly, the formation of an aromatic ring greatly facilitates this step relative to other types of substrates. Unsurprisingly, the cycloreversion to produce benzoisoquinoline 8 along with hydrazonium 39 was calculated to be strongly exergonic. Finally, the hydrolysis of 39 to regenerate hydrazinium catalyst 10 (and acetone) required an energy input approximately equal to that gained from the condensation with the substrate to form 35.Open in a separate windowFig. 3(A) Computational study of hydrazine 10-catalyzed RCCOM of biaryl aldehyde 7. Calculations were performed at the PCM(THF)-M06-2X/6-311+G(d,p)//6-31G(d) level of theory.24,25 All energies are given in units of kcal mol−1. (B) 1H NMR spectroscopy of the RCCOM reaction of 7 catalyzed by 10 at 60 °C in THF-d8 with mesitylene as internal standard for 5 hours. (C) Plot of the data showing conversion vs. time. SM = starting material 7; CA = cycloadduct 37; Prd = product 8.Given the low activation energy barriers of both the cycloaddition and cycloreversion steps, we reasoned it should be possible for the reaction to proceed at a relatively low temperature. In fact, we observed 82% conversion of biaryl aldehyde 7 to cycloadduct 37 (72%) and benzoisoquinoline 8 (10%) at 40 °C over 6 hours. Attempts to isolate the cycloadduct 37 resulted in complete conversion to 8 during column chromatography. Meanwhile, at 60 °C over approximately 4 hours, 95% of the starting material 7, via the intermediate cycloadduct 37, was converted to benzoisoquinoline product 8 (Fig. 3B and C). The rate of consumption of the cycloadduct was consistent with first-order behavior, and upon fitting, revealed the rate constant for cycloreversion as kCR = 2.14 × 10−4 s−1, with a half-life of 54 minutes. These observations corroborate the computational results, in particular showing that the cycloreversion step is quite facile with these types of substrates compared to other hydrazine-catalyzed COM reactions we have investigated17 and that cycloaddition and cycloreversion have energetically similar activation energies.In conclusion, the development of catalytic carbonyl–olefin metathesis reactions has opened new possibilities for the rapid construction of complex molecules. The current work demonstrates this strategy as a means to rapidly access polycyclic heteroaromatics, which often require lengthy sequences that can be complicated by the presence of basic functionality. The ability of the hydrazine catalysis platform to accommodate such functional groups provides a novel approach to polycyclic heteroaromatic synthesis and greatly expands the landscape of structures accessible by RCCOM.  相似文献   
[首页] « 上一页 [6] [7] [8] [9] [10] 11 [12] [13] [14] [15] [16] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号