首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3543篇
  免费   190篇
  国内免费   55篇
化学   2781篇
晶体学   28篇
力学   74篇
综合类   6篇
数学   294篇
物理学   605篇
  2023年   16篇
  2022年   61篇
  2021年   86篇
  2020年   59篇
  2019年   94篇
  2018年   65篇
  2017年   60篇
  2016年   149篇
  2015年   127篇
  2014年   175篇
  2013年   278篇
  2012年   295篇
  2011年   317篇
  2010年   197篇
  2009年   158篇
  2008年   211篇
  2007年   207篇
  2006年   198篇
  2005年   174篇
  2004年   153篇
  2003年   137篇
  2002年   164篇
  2001年   58篇
  2000年   45篇
  1999年   35篇
  1998年   19篇
  1997年   23篇
  1996年   21篇
  1995年   17篇
  1994年   18篇
  1993年   13篇
  1992年   6篇
  1991年   8篇
  1990年   5篇
  1989年   10篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   16篇
  1984年   14篇
  1983年   9篇
  1980年   5篇
  1977年   4篇
  1975年   4篇
  1973年   3篇
  1927年   3篇
  1914年   3篇
  1913年   4篇
  1909年   4篇
  1908年   4篇
排序方式: 共有3788条查询结果,搜索用时 9 毫秒
101.
以4-氨基-4,5-二氢-3-苯氧甲基-1氢-1,2,4-三唑-5-硫酮与取代苯甲醛为原料反应制得了9个新的三唑硫酮席夫碱类化合物,经IR、1H NMR和元素分析确定了各化合物结构。初步室内毒力测试结果表明该类化合物其具有较好的杀菌活性。  相似文献   
102.
103.
Mesoporous Co3O4 nanosheets (Co3O4‐NS) and nitrogen‐doped reduced graphene oxide (N‐rGO) are synthesized by a facile hydrothermal approach, and the N‐rGO/Co3O4‐NS composite is formulated through an infiltration procedure. Eventually, the obtained composites are subjected to various characterization techniques, such as XRD, Raman spectroscopy, surface area analysis, X‐ray photoelectron spectroscopy (XPS), and TEM. The lithium‐storage properties of N‐rGO/Co3O4‐NS composites are evaluated in a half‐cell assembly to ascertain their suitability as a negative electrode for lithium‐ion battery applications. The 2D/2D nanostructured mesoporous N‐rGO/Co3O4‐NS composite delivered a reversible capacity of about 1305 and 1501 mAh g?1 at a current density of 80 mA g?1 for the 1st and 50th cycles, respectively. Furthermore, excellent cyclability, rate capability, and capacity retention characteristics are noted for the N‐rGO/Co3O4‐NS composite. This improved performance is mainly related to the existence of mesoporosity and a sheet‐like 2D hierarchical morphology, which translates into extra space for lithium storage and a reduced electron pathway. Also, the presence of N‐rGO and carbon shells in Co3O4‐NS should not be excluded from such exceptional performance, which serves as a reliable conductive channel for electrons and act as synergistically to accommodate volume expansion upon redox reactions. Ex‐situ TEM, impedance spectroscopy, and XPS, are also conducted to corroborate the significance of the 2D morphology towards sustained lithium storage.  相似文献   
104.
Core‐shell carbon‐coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high‐power lithium‐ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon‐coated LiFePO4‐rGO (LFP/C‐rGO) hybrids were ascribed to three factors: 1) In‐situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4, 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C‐rGO hybrids with LFP/C‐rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li+ ion and electron transport for high power applications.  相似文献   
105.
Redox‐inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox‐inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII‐(O2)‐Zn(CF3SO3)2 ( 1 ‐Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one‐electron oxidation and reduction potentials of 1 ‐Zn2+. This further changes the reactivities of 1 ‐Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1 ‐Zn2+, whereas 1 ‐Zn2+ coordinating two water molecules, (TMC)FeIII‐(O2)‐Zn(CF3SO3)2‐(OH2)2 [ 1 ‐Zn2+‐(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1 ‐Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1 ‐Zn2+‐(OH2)2. The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.  相似文献   
106.
Two new biflavones, (aR)‐3′‐methoxycupressuflavone ( 1 ) and (aR)‐3′,3′′′‐dimethoxycupressuflavone ( 2 ), and two new furanone glucosides, zabeliosides A and B ( 3 and 4 , resp.), along with two known biflavones, cupressuflavone ( 5 ) and amentoflavone ( 6 ), were isolated from the leaves of Zabelia tyaihyonii. The structures of the new compounds were elucidated by 1D‐ and 2D‐NMR, HR‐ESI‐MS, and circular dichroism.  相似文献   
107.
Nanocrystalline tantalum nitride (TaN) thin films have been deposited by reactive direct current magnetron sputtering technique on Si/SiO2 (100) substrate with nitrogen flow rate ranging from 0, 3, 5, 7, 9 to 11 standard cubic centimeter per minute (sccm). Structural properties, surface morphology, chemical composition and and resistivity of the TaN films were investigated by X‐ray diffraction (XRD), field emission scanning electron microscopy, X‐ray photoemission spectroscopy (XPS) and four‐point probe measurements, respectively. In the XRD spectra, a classical formation sequence of tantalum nitride phases in the order of Ta‐Ta2N‐TaN‐Ta4N5 and decreasing amount of metallic Ta were observed with increasing nitrogen flow. The electrical resistivity of the TaN film was found to increase with increasing N/Ta ratio as a result of the increased electron scattering from interstitial N atoms. In the XPS analysis, two groups of Ta4f doublets relating to different TaN phases were observed in the core level spectra of TaN films. No strong coupling was observed between the Ta4f doublets and the Ta4p and the N1s groups. The appropriate nitrogen flow was believed to be helpful in the bonding and formation of stoichiometric TaN. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
108.
Synthetic molecules that modulate and probe biological events are critical tools in chemical biology. Utilizing combinatorial and diversity‐oriented synthetic strategies, access to large numbers of small molecules is becoming more and more feasible, and research groups in this field can take advantage of the power of chemical diversity. Since the majority of early studies were focused on the discovery of compounds that perturb protein functions, diversity‐based approaches are often considered as therapeutic lead discovery tactics. However, the diversity‐oriented approach can also be applied to advance distinct aims, such as target protein identification, or the development of imaging probes and sensors. This review provides a personal perspective of the chemical‐diversity‐based approach and how this principle can be adapted to various chemical biology studies.  相似文献   
109.
Yoo HS  Kim JI  Yang N  Koh EK  Park JG  Hong CS 《Inorganic chemistry》2007,46(22):9054-9056
A new one-dimensional heterochiral coordination polymer [Co(bmdt)(N3)2].MeCN (1.MeCN) with well-isolated chains was prepared via a self-assembly process. Magnetic data show that intrachain ferromagnetic couplings via the single end-to-end azide group are observed, which is an extraordinary case among the azide-bridged Co(II) systems.  相似文献   
110.
We report a liquid-phase time-resolved X-ray diffraction study that resolves the molecular structures of the short-lived intermediates formed in the photodissociation of tetrabromomethane in methanol. Time-resolved X-ray diffraction can detect all chemical species simultaneously, and the diffraction signal from each chemical species can be quantitatively calculated from molecular structures and compared with experimental data with high accuracy and precision. The photochemistry of carbon tetrahalides has long been explored to describe their reactions in the natural environment due to its relevance to ozone depletion. Excited with an ultraviolet optical pulse, the complicated photodissociation dynamics of CBr4 was followed in a wide temporal range from picoseconds up to microseconds and associated rate coefficients were determined by analyzing time-resolved diffraction patterns accumulated from 100 ps X-ray pulses. The homolytic cleavage of one C-Br bond in the parent CBr4 molecule yields the CBr3 and Br radicals, which escape from the solvent cage and combine nongeminately to form C2Br6 and Br2, respectively. C2Br6 eventually decays to give C2Br4 and Br2 as final stable products. Our diffraction data at the current signal-to-noise ratio could not provide any evidence for the geminate recombination of the CBr3 and Br radicals to form the Br2CBr-Br isomer or the solvated ion pair, implying that their formation is a minor channel compared with those observed clearly by time-resolved diffraction in this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号