首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   4篇
化学   36篇
晶体学   4篇
力学   2篇
数学   31篇
物理学   22篇
  2023年   1篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   11篇
  2010年   8篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1994年   1篇
  1992年   2篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有95条查询结果,搜索用时 593 毫秒
81.
82.
83.
In the title compounds, 3-(dihydroxyboryl)anilinium bisulfate monohydrate, C6H9BNO2+·HSO4·H2O ( I ), and 3-(dihydroxyboryl)anilinium methyl sulfate, C6H9BNO2+·CH3SO4 ( II ), the almost planar boronic acid molecules are linked by pairs of O—H…O hydrogen bonds, forming centrosymmetric motifs that can be described by the graph-set R22(8) motif. In both crystals, the B(OH)2 group acquires a synanti conformation (with respect to the H atoms). The presence of the hydrogen-bonding functional groups B(OH)2, NH3+, HSO4, CH3SO4 and H2O generates three-dimensional hydrogen-bonded networks, in which the bisulfate (HSO4) and methyl sulfate (CH3SO4) counter-ions act as the central building blocks within the crystal structures. Furthermore, in both structures, the packing is stabilized by weak boron–π interactions, as shown by noncovalent interactions (NCI) index calculations.  相似文献   
84.
At present, there is a considerable amount of work devoted to the study of the thermophysical properties of pure ionic liquids, which contrasts with the few data available for their mixtures. One of the most appealing characteristics of ionic liquids is the capability of subtly changing the chemical structure of the cation and anion in order to design appropriate solvents for specific applications. Mixtures of ionic liquids increase enormously this specificity, due to the unlimited combinations that arise from mixing two or more ionic liquids. In this context, the study of the thermophysical properties of these mixtures is revealed as a fundamental task. In this work the viscosities of the ionic liquid binary mixtures with a common ion ([C6mim] + [C2mim])[BF4], ([C6mim] + [C4mim])[BF4], [C4mim]([BF4] + [MeSO4]) and [C4mim]([PF6] + [BF4]) were determined within the temperature range (298.15–308.15) K. The temperature dependence of the viscosity for pure liquids is analyzed by means of the Vogel-Tammann-Fulcher equation and several mixing rules are applied for the mixtures.  相似文献   
85.
A new method for determining isobaric thermal expansivity of liquids as a function of temperature and pressure through calorimetric measurements against pressure is described. It is based on a previously reported measurement technique, but due to the different kind of calorimeter and experimental set up, a new calibration procedure was developed. Two isobaric thermal expansivity standards are needed; in this work, with a view on the quality of the available literature data, hexane and water are chosen. The measurements were carried out in the temperature and pressure intervals (278.15 to 348.15) K and (0.5 to 55) MPa for a set of liquids, and experimental values are compared with the available literature data in order to evaluate the precision of the experimental procedure. The analysis of the results reveals that the proposed methodology is highly accurate for isobaric thermal expansivity determination, and it allows obtaining a precise characterisation of the temperature and pressure dependence of this thermodynamic coefficient.  相似文献   
86.
The predictions from a recently reported (J. Chem. Phys. 2004, 120, 6648) two-state association model (TSAM) have been tested against experimental data. The temperature, T, and pressure, p, dependence of the isobaric heat capacity, C(p), for three pure alcohols and the temperature dependence at atmospheric pressure of the excess heat capacity, C(p)(E), for four alcohol + ester mixtures have been measured. The branched alcohols were 3-pentanol, 3-methyl-3-pentanol, and 3-ethyl-3-pentanol, and the mixtures were 1-butanol and 3-methyl-3-pentanol mixed with propyl acetate and with butyl formate. These data, together with literature data for alcohol + n-alkane and alcohol + toluene mixtures, have been analyzed using the TSAM. The model, originally formulated for the C(p) of pure liquids, has been extended here to account for the C(p)(E) of mixtures. To evaluate its performance, quantum mechanical ab initio calculations for the H-bond energy, which is one of the model parameters, were performed. The effect of pressure on C(p) for pure liquids was elucidated, and the variety of C(p)(E)(T) behaviors was rationalized. Furthermore, from the C(p) data at various pressures, the behavior of the volume temperature derivative, (deltaV/deltaT)(p), was inferred, with the existence of a (deltaV/deltaT)(p) versus T maximum for pure associated liquids such as the branched alcohols being predicted. It is concluded that the TSAM captures the essential elements determining the behavior of the heat capacity for pure liquids and mixtures, providing insight into the macroscopic manifestation of the association phenomena occurring at the molecular level.  相似文献   
87.
Ring opening polymerization (ROP) of hexamethylcyclotrisiloxane (D3) and octamethylcyclotetrasiloxane (D4) was promoted by acid‐treated synthetic and natural silica‐aluminates. Silica‐alumina (1:3 Si/Al molar ratio) was obtained using a simple and economic route from precipitation of aluminum sulfate solutions. The material was treated in an acidic medium to improve the content of acid sites and successfully tested as inorganic acidic catalyst for ROP of D3 or D4 cyclosiloxanes. Natural bentonite was treated and used in a similar manner. Once the ROP reaction completed, the catalyst was easily removed and it was found that the recovered synthetic silica‐alumina was active in a second ROP reaction. The effect of the concentration and type of catalyst in respect to the molecular weight and polydispersity of polydimethylsiloxanes was analyzed: increasing the amount of silica‐alumina in ROP of D4 from 0.05 to 0.1 g decreased the average molecular weight (Mn = 13–1.8 kDa) associated with an increase in the polydispersity (2.95 vs. 1.81). Analogous results were found with bentonite. These values suggest that an increase in the catalyst concentration led to a lower Mn, with a more homogeneous molecular chain dimension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
88.
The isobaric thermal expansivity against temperature and pressure for the system 1-hexanol + n-hexane was directly determined by means of a calorimetric method. From these data, the excess isobaric thermal expansivity is calculated at representative temperatures and pressures. The obtained results for this excess quantity are qualitatively discussed by applying well-known arguments often used for explaining the thermodynamic behavior of alcohol + alkane mixtures. In order to check the consistency of these data with those of literature, the derivative of excess molar volume against temperature and that of excess isobaric molar heat capacity against pressure are calculated and compared with those obtained from literature data. Very good coherence between both data sources is obtained.  相似文献   
89.
90.
We obtain sufficient conditions for bifurcation of homoclinic trajectories of nonautonomous Hamiltonian vector fields parametrized by a circle, together with estimates for the number of bifurcation points in terms of the Maslov index of the asymptotic stable and unstable bundles of the linearization at the stationary branch.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号