首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2398篇
  免费   88篇
  国内免费   8篇
化学   1632篇
晶体学   15篇
力学   103篇
数学   344篇
物理学   400篇
  2023年   28篇
  2022年   33篇
  2021年   54篇
  2020年   59篇
  2019年   58篇
  2018年   41篇
  2017年   29篇
  2016年   71篇
  2015年   63篇
  2014年   59篇
  2013年   102篇
  2012年   147篇
  2011年   169篇
  2010年   84篇
  2009年   70篇
  2008年   152篇
  2007年   136篇
  2006年   147篇
  2005年   126篇
  2004年   67篇
  2003年   74篇
  2002年   47篇
  2001年   39篇
  2000年   24篇
  1999年   20篇
  1998年   32篇
  1997年   21篇
  1996年   23篇
  1995年   17篇
  1994年   17篇
  1993年   20篇
  1992年   20篇
  1991年   18篇
  1990年   14篇
  1989年   15篇
  1988年   12篇
  1987年   19篇
  1986年   25篇
  1985年   15篇
  1984年   23篇
  1983年   16篇
  1982年   20篇
  1981年   28篇
  1980年   30篇
  1978年   23篇
  1977年   25篇
  1976年   22篇
  1975年   17篇
  1974年   11篇
  1972年   11篇
排序方式: 共有2494条查询结果,搜索用时 15 毫秒
31.
In (3)He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted (3)He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only approximately 1 L of hyperpolarized (3)He gas. Diffusion weighting ranges from 0 s/cm(2) to 40 s/cm(2). Results show that the non-Gaussian effects of (3)He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.  相似文献   
32.
This paper demonstrates a method to determine the bidirectional transmittance distribution function (BTDF) using an integrating sphere. Information about the sample’s angle-dependent scattering is obtained by making transmittance measurements with the sample at different distances from the integrating sphere. Knowledge about the illuminated area of the sample and the geometry of the sphere port in combination with the measured data combines to a system of equations that includes the angle-dependent transmittance.The resulting system of equations is an ill-posed problem which rarely gives a physical solution. A solvable system is obtained by using Tikhonov regularization on the ill-posed problem. The solution to this system can then be used to obtain the BTDF.Four bulk-scattering samples were characterised using two goniophotometers and the described method to verify the validity of the new method. The agreement shown is excellent for the more diffuse samples. The solution to the low-scattering samples contains unphysical oscillations, but still gives the correct shape of the solution. The origin of the oscillations and why they are more prominent in low-scattering samples are discussed.  相似文献   
33.
Thermal conductance of nanofluids: is the controversy over?   总被引:1,自引:1,他引:1  
Over the last decade nanofluids (colloidal suspensions of solid nanoparticles) sparked excitement as well as controversy. In particular, a number of researches reported dramatic increases of thermal conductivity with small nanoparticle loading, while others showed moderate increases consistent with the effective medium theories on well-dispersed conductive spheres. Accordingly, the mechanism of thermal conductivity enhancement is a hotly debated topic. We present a critical analysis of the experimental data in terms of the potential mechanisms and show that, by accounting for linear particle aggregation, the well established effective medium theories for composite materials are capable of explaining the vast majority of the reported data without resorting to novel mechanisms such as Brownian motion induced nanoconvection, liquid layering at the interface, or near-field radiation. However, particle aggregation required to significantly enhance thermal conductivity, also increases fluid viscosity rendering the benefit of nanofluids to flow based cooling applications questionable.  相似文献   
34.
35.
In the present work, we have synthesized nanostructured hematite samples using chemical precipitation method. The crystal structure and the grain size of the samples were studied using XRD. The zero field cooled and field cooled magnetization curves of the samples were recorded in the temperature range from 300 to 10 K. The variations of Morin transition temperature and blocking temperature with the grain size of the samples were investigated. The hysterics curves of the samples were recorded and the samples showed a superparamagnetic nature at room temperature whereas, at 10 K the samples showed open hysteresis curves. The sample with smaller grain size showed higher value of coercivity compared to samples with larger grain size. Mössbauer spectra of the samples were recorded and the grain size dependence on Mössbauer parameters was investigated.  相似文献   
36.
Due to their small size, differential microphone arrays (DMAs) are very attractive. Moreover, they have been effective in combating noise and reverberation. Recently, a new class of DMAs of different orders have been developed with the MacLaurin’s series and the frequency-independent patterns. However, the MacLaurin’s series does not approximate well the exponential function, which appears in the general definition of the beampattern, when the intersensor spacing is not small enough. To circumvent this problem, we propose in this paper to approximate the exponential function with the Jacobi–Anger expansion. Based on this approximation and the frequency-independent Chebyshev patterns, we derive first-, second-, and third-order DMAs. Furthermore, in order to improve the robustness of DMAs against white noise amplification, we propose to use more microphones combined with minimum-norm filters. It is also shown that the Jacobi–Anger expansion is optimal from a mean-squared error perspective. Simulations are carried out to evaluate the performance of the proposed DMAs.  相似文献   
37.
38.
According to the universal entropy bound, the entropy (and hence information capacity) of a complete weakly self-gravitating physical system can be bounded exclusively in terms of its circumscribing radius and total gravitating energy. The bound’s correctness is supported by explicit statistical calculations of entropy, gedanken experiments involving the generalized second law, and Bousso’s covariant holographic bound. On the other hand, it is not always obvious in a particular example how the system avoids having too many states for given energy, and hence violating the bound. We analyze in detail several purported counterexamples of this type, and exhibit in each case the mechanism behind the bound’s efficacy. In memoriam Asher Peres.  相似文献   
39.
Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.  相似文献   
40.
A design method is presented for an optical element that shapes an arbitrary collimated beam. The optical element consists of a pair of diffractive optical elements (DOEs). The outgoing beam is also collimated, and can have any desired intensity profile. The phase functions of the DOEs are computed by minimizing an appropriate cost function under an energy conservation constraint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号