首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2398篇
  免费   88篇
  国内免费   8篇
化学   1632篇
晶体学   15篇
力学   103篇
数学   344篇
物理学   400篇
  2023年   28篇
  2022年   33篇
  2021年   54篇
  2020年   59篇
  2019年   58篇
  2018年   41篇
  2017年   29篇
  2016年   71篇
  2015年   63篇
  2014年   59篇
  2013年   102篇
  2012年   147篇
  2011年   169篇
  2010年   84篇
  2009年   70篇
  2008年   152篇
  2007年   136篇
  2006年   147篇
  2005年   126篇
  2004年   67篇
  2003年   74篇
  2002年   47篇
  2001年   39篇
  2000年   24篇
  1999年   20篇
  1998年   32篇
  1997年   21篇
  1996年   23篇
  1995年   17篇
  1994年   17篇
  1993年   20篇
  1992年   20篇
  1991年   18篇
  1990年   14篇
  1989年   15篇
  1988年   12篇
  1987年   19篇
  1986年   25篇
  1985年   15篇
  1984年   23篇
  1983年   16篇
  1982年   20篇
  1981年   28篇
  1980年   30篇
  1978年   23篇
  1977年   25篇
  1976年   22篇
  1975年   17篇
  1974年   11篇
  1972年   11篇
排序方式: 共有2494条查询结果,搜索用时 15 毫秒
21.
Quantum spin tunneling and Kondo effect are two very different quantum phenomena that produce the same effect on quantized spins, namely, the quenching of their magnetization. However, the nature of this quenching is very different so that quantum spin tunneling and Kondo effect compete with each other. Importantly, both quantum spin tunneling and Kondo effect produce very characteristic features in the spectral function that can be measured by means of single spin scanning tunneling spectroscopy and allows to probe the crossover from one regime to the other. We model this crossover, and the resulting changes in transport, using a non-perturbative treatment of a generalized Anderson model including magnetic anisotropy that leads to quantum spin tunneling. We predict that, at zero magnetic field, integer spins can feature a split-Kondo peak driven by quantum spin tunneling.  相似文献   
22.
Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.  相似文献   
23.
The open nature of radio propagation enables ubiquitous wireless communication. This allows for seamless data transmission. However, unauthorized users may pose a threat to the security of the data being transmitted to authorized users. This gives rise to network vulnerabilities such as hacking, eavesdropping, and jamming of the transmitted information. Physical layer security (PLS) has been identified as one of the promising security approaches to safeguard the transmission from eavesdroppers in a wireless network. It is an alternative to the computationally demanding and complex cryptographic algorithms and techniques. PLS has continually received exponential research interest owing to the possibility of exploiting the characteristics of the wireless channel. One of the main characteristics includes the random nature of the transmission channel. The aforesaid nature makes it possible for confidential and authentic signal transmission between the sender and the receiver in the physical layer. We start by introducing the basic theories of PLS, including the wiretap channel, information-theoretic security, and a brief discussion of the cryptography security technique. Furthermore, an overview of multiple-input multiple-output (MIMO) communication is provided. The main focus of our review is based on the existing key-less PLS optimization techniques, their limitations, and challenges. The paper also looks into the promising key research areas in addressing these shortfalls. Lastly, a comprehensive overview of some of the recent PLS research in 5G and 6G technologies of wireless communication networks is provided.  相似文献   
24.
The biological response to four well-characterized amorphous silica nanoparticles was investigated in RAW 264.7 macrophages in view of their potential application as drug carriers to sites of inflammation. All silica nanoparticles-induced cell membrane damage, reduced metabolic activity, generated ROS and released various cytokines, but to different extents. Two silica nanoparticles of 34 nm (A and B) with different zetapotentials were more cytotoxic than (aggregated) 11 and 248 nm nanoparticles, while cytokines were mostly induced by the (aggregated) 11 nm and only one of the 34 nm nanoparticles (34A). The results indicate that specific silica nanoparticles may have counterproductive effects, for example when used as carriers of anti-inflammatory drugs. The physicochemical properties determining the response of nanoparticles vary for different responses, implying that a screening approach for the safe development of nanoparticles needs to consider the role of combinations of (dynamic) physicochemical properties and needs to include multiple toxicity endpoints.  相似文献   
25.
We study a Co-benzene sandwich molecule bridging the tips of a Cu nanocontact as a realistic model of correlated molecular transport. To this end we employ a recently developed method for calculating the correlated electronic structure and transport properties of nanoscopic conductors. When the molecule is slightly compressed by the tips of the nanocontact the dynamic correlations originating from the strongly interacting Co 3d shell give rise to an orbital Kondo effect while the usual spin Kondo effect is suppressed due to Hund's rule coupling. This nontrivial Kondo effect produces a sharp and temperature-dependent Abrikosov-Suhl resonance in the spectral function at the Fermi level and a corresponding Fano line shape in the low bias conductance.  相似文献   
26.
A theory has been given for the scattering of neutrons by anharmonic crystals, for which terms of the typeV (3) (k 1j1; —k 1j1;o j) which contribute to the sublattice displacements are not neglected. Using the standard perturbation theory in the interaction picture or Green’s function method, an expression has been derived for the differential scattering cross-section which brings in the shift and the width of the phonons in one-phonon energy exchange processes. It is shown that the sublattice displacements will modify the phase factor arising from the scattering by any atom in the unit cell, and the Debye-Waller factor also gets altered both by the sublattice displacements as well as by higher order terms arising from anharmonicity. It is shown that the differential scattering cross-section contains a term linearly depending on the third order anharmonicity coefficientV (3) (k 1j1;k 2j2;k 3j3) and neutron scattering by crystals should provide a useful method for evaluating the third order anharmonicity coefficients.  相似文献   
27.
An equivalent circuit model for analyzing the AC characteristics of power VDMOS transistors is presented. The model accounts for high field and saturation effects. This is achieved by incorporating dependent voltage and current sources in the device model. Results are given for the AC characteristics of a POLYFET F2001 Power VDMOSFET rated with a drain current of 1.4A, power out of 2.5W at 1GHz. The linear, quasi-saturation and saturation regions of the IV characteristics are accounted for in the analysis. The small signal device parasitics are extracted through s-parameter methods. The s-parameter results were used to extract the frequency dependent parasitics including parasitic capacitances, inductances and transconductances.  相似文献   
28.
29.
30.
Shrinkage microporosity in cast aluminum was characterized utilizing the frequency dependence of ultrasonic attenuation caused by scattering from the pores. Measurements were made with the plate specimen immersed in water, and, by using a focused transducer, spatial resolution of about 2 mm was obtained. An accurate measure of attenuation was obtained by comparing the specimen’s ultrasonic signal with that from a pore-free reference specimen. Although the attenuation could be fitted using a single spherical pore size, better fits were obtained by assuming a lognormal distribution of spheres. Pore volume fraction inferred from the lognormal fits overestimates the actual volume fraction, determined from density measurements, by the same factor for all volume fractions. The actual volume fraction is overestimated by more than 100%, due to the complicated, nonspherical pore shapes, and must be taken into account to obtain accurate values of porosity. The strong correlation (r2=0.97) between ultrasonic and density-derived volume fractions permits reliable, nondestructive laboratory measurements of porosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号