Nucleotides, their analogues, and other phosphate esters and phosphoramidates often contain the triethylammonium cation as a counterion. We found that this may be lost during chromatographic purification or concentration of solutions, yielding products in acidic forms or containing sub-stoichiometric amounts of the counterion. This in turn may be detrimental, e.g., due to possible decomposition of a compound or inaccurate sample preparation. Correlations between the structure of studied compounds and their susceptibility for cation loss were analyzed. Modifications in preparative techniques were developed to obtain the studied compounds with stoichiometric anion to cation ratios.
Graphical Abstract Triethylammonium salts of phosphate esters and phosphoramidates may lose the cationic component during chromatography or evaporation of solvent
Changes in the expression of various genes, including pregnancy-associated hormone receptors and extracellular matrix proteins, have been suggested to play a significant role in bovine placental development. This study aimed to examine the influence of sex steroids and PGF2α on decorin (DCN) expression in the epithelial cells of bovine caruncle in early–mid pregnancy in cows. The expression patterns of DCN, PTGFR, PGR and ESR1 were analyzed by RT-qPCR and Western blotting in primary caruncular epithelial cell cultures (PCECC) and placental tissue homogenates derived from the 2nd and 4th months of pregnancy. PCECC were found to express DCN, PTGFR, PGR and ESR1. The intensity of PGR staining was higher in cells derived from the 4th month of pregnancy (p < 0.05). The 17β-estradiol, progesterone and PGF2α have not been shown to affect DCN expression. PGF2α decreased PTGFR expression in cells derived from the 4th month of gestation (p < 0.05). In conclusion, the results of the present preliminary study showed that the expression of the PTGFR, ESR1, PGR and DCN in PCECC does not vary throughout early–mid pregnancy. Further studies should be carried out to observe the relationship between hormonal status and cellular adhesion to determine their importance for properly developing placentation and pregnancy in cows. 相似文献
Using bioconversion and simultaneous value-added product generation requires purification of the gaseous and the liquid streams before, during, and after the bioconversion process. The effect of diversified process parameters on the efficiency of biohydrogen generation via biological processes is a broad object of research. Biomass-based raw materials are often applied in investigations regarding biohydrogen generation using dark fermentation and photo fermentation microorganisms. The literature lacks information regarding model mixtures of lignocellulose and starch-based biomass, while the research is carried out based on a single type of raw material. The utilization of lignocellulosic and starch biomasses as the substrates for bioconversion processes requires the decomposition of lignocellulosic polymers into hexoses and pentoses. Among the components of lignocelluloses, mainly lignin is responsible for biomass recalcitrance. The natural carbohydrate-lignin shields must be disrupted to enable lignin removal before biomass hydrolysis and fermentation. The matrix of chemical compounds resulting from this kind of pretreatment may significantly affect the efficiency of biotransformation processes. Therefore, the actual state of knowledge on the factors affecting the culture of dark fermentation and photo fermentation microorganisms and their adaptation to fermentation of hydrolysates obtained from biomass requires to be monitored and a state of the art regarding this topic shall become a contribution to the field of bioconversion processes and the management of liquid streams after fermentation. The future research direction should be recognized as striving to simplification of the procedure, applying the assumptions of the circular economy and the responsible generation of liquid and gas streams that can be used and purified without large energy expenditure. The optimization of pre-treatment steps is crucial for the latter stages of the procedure. 相似文献
One of the macronutrients indispensable for plant growth and development is nitrogen (N). It is responsible for starch and storage protein (gliadins and glutenins) biosynthesis and, in consequence, influences kernels’ quality and yields. However, applying N-fertilizers increases gluten content in wheat, and it may intensify the risk of developing allergy symptoms in gluten-sensitive individuals. The purpose of our research was to analyse whether and how the elimination of N-fertilizers during the cultivation of wasko.gl− wheat (modified genotype lacking ω-gliadins) changes the secondary structures of gliadin proteins. To this aim, using the FT-Raman technique, we examined flour and gliadin protein extracts obtained from kernels of two winter wheat lines: wasko.gl+ (with a full set of gliadin proteins) and wasko.gl− (without ω-gliadin fraction) cultivated on two different N-fertilization levels—0 and 120 kg N·ha−1. On the basis of the obtained results, we proved that nitrogen fertilization does not have a major impact on the stability of the secondary structures of gliadin proteins for wasko.gl− wheat line with reduced allergenic properties. Furthermore, the results presented herein suggest the possibility of increasing the stability of glutenin structures as a result of the N-fertilization of wasko.gl− wheat line, which gives hope for its use in the production of wheat articles devoted to people suffering from diseases related to gluten sensitivity. 相似文献
At this time, the development of advanced elastic dielectric materials for use in organic devices, particularly in organic field-effect transistors, is of considerable interest to the scientific community. In the present work, flexible poly(dimethylsiloxane) (PDMS) specimens cross-linked by means of ZnCl2-bipyridine coordination with an addition of 0.001 wt. %, 0.0025 wt. %, 0.005 wt. %, 0.04 wt. %, 0.2 wt. %, and 0.4 wt. % of gold nanoparticles (AuNPs) were prepared in order to understand the effect of AuNPs on the electrical properties of the composite materials formed. The broadband dielectric spectroscopy measurements revealed one order of magnitude decrease in loss tangent, compared to the coordinated system, upon an introduction of 0.001 wt. % of AuNPs into the polymeric matrix. An introduction of AuNPs causes damping of conductivity within the low-temperature range investigated. These effects can be explained as a result of trapping the Cl− counter ions by the nanoparticles. The study has shown that even a very low concentration of AuNPs (0.001 wt. %) still brings about effective trapping of Cl− counter anions, therefore improving the dielectric properties of the investigated systems. The modification proposed reveals new perspectives for using AuNPs in polymers cross-linked by metal-ligand coordination systems. 相似文献
For near horizon geometry we examine the linearized equations around extremal Kerr horizon (which is a unique axially symmetric near horizon geometry) and give some arguments towards stability of this horizon with respect to generic (non-symmetric) linear perturbation of near horizon geometry. The result is also applicable for other situations like Kundt’s class spacetimes or isolated horizons. 相似文献
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities. 相似文献
We consider a class of optimization problems for sparse signal reconstruction which arise in the field of compressed sensing (CS). A plethora of approaches and solvers exist for such problems, for example GPSR, FPC_AS, SPGL1, NestA, $\mathbf{\ell _1\_\ell _s}$, PDCO to mention a few. CS applications lead to very well conditioned optimization problems and therefore can be solved easily by simple first-order methods. Interior point methods (IPMs) rely on the Newton method hence they use the second-order information. They have numerous advantageous features and one clear drawback: being the second-order approach they need to solve linear equations and this operation has (in the general dense case) an ${\mathcal {O}}(n^3)$ computational complexity. Attempts have been made to specialize IPMs to sparse reconstruction problems and they have led to interesting developments implemented in $\mathbf{\ell _1\_\ell _s}$ and PDCO softwares. We go a few steps further. First, we use the matrix-free IPM, an approach which redesigns IPM to avoid the need to explicitly formulate (and store) the Newton equation systems. Secondly, we exploit the special features of the signal processing matrices within the matrix-free IPM. Two such features are of particular interest: an excellent conditioning of these matrices and the ability to perform inexpensive (low complexity) matrix–vector multiplications with them. Computational experience with large scale one-dimensional signals confirms that the new approach is efficient and offers an attractive alternative to other state-of-the-art solvers. 相似文献