首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   7篇
  国内免费   3篇
化学   127篇
晶体学   4篇
力学   6篇
数学   29篇
物理学   16篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   5篇
  2017年   7篇
  2016年   13篇
  2015年   9篇
  2014年   13篇
  2013年   18篇
  2012年   14篇
  2011年   10篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1983年   2篇
  1981年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
21.
The polymerization of styrene (St) was carried out with varying amounts of methanol in aqueous medium. As methanol content decreased (to 50 %), the phase of polymerization mixture (methanol/water/monomer) changed to a heterogeneous state; the homogeneous state was obtained in samples that contain 75 and 100 % methanol. In order to verify the mechanism of polymerization in heterogeneous and homogeneous mixtures, the nucleus formation rate during polymerization, the stability equilibrium of the media and seeded particles, and the size of particles and their growth in polymerization were experimentally being monitored. With the homogeneous mixture in 75 wt% methanol, dumbbell, triangle, and peanut-like particles have been formed. On the other hand, the characteristics of the polymerization products were different from those typically obtained in the emulsion polymerization and in the sample with 100 wt% methanol dispersion polymerization. In the sample with 100 % methanol and in one with 50 % methanol, monodispersed spherical particles are formed in the final conversion. Thus, homogeneity in the aqueous methanol mixture can be a critical factor in determining the polymerization modes between dispersion and emulsion polymerization.  相似文献   
22.
A three-dimensional numerical simulation has been performed to study the growth of Ge0.98Si0.02 by the Traveling Solvent Method. We attempted to suppress the buoyancy convection, in the Ge0.98Si0.02 melt zone, by applying axial and rotating magnetic fields. The effects of the applied magnetic field intensity, on the transport structures in the melt (flow and concentration fields, heat and mass transfer), have been investigated in detail. The steady-state full Navier–Stokes equations, as well as energy, mass species transport and continuity equations are numerically solved using the finite element method. By applying an axial magnetic field of various intensities (2, 10, and 22 mT), we found that as the axial magnetic field increases, the silicon distribution nearby the growth interface becomes more uniform. In the case of a rotating magnetic field, with different applied rotational speeds (2, 7 and 10 rpm), we found that such kind of magnetic field has a marked effect on the silicon concentration, which changes its shape from a convex one to a nearly flat shape as the magnetic field intensity increases. An alternative method to reduce or suppress buoyancy convection, in the melt zone, is the growing of the sample in a microgravity environment, with a gravity level of at least 10?4 the earth normal gravity level; in this case the results revealed smooth and almost perfect straight concentration contours, due to the buoyancy convection weakness.  相似文献   
23.
24.
Jamel Jaber 《Positivity》2014,18(1):161-170
Let $X$ be a lattice ordered algebra ( $\ell $ -algebra). A positive element $x\in $ $X$ is said to be totally bounded if $x^{2}\le x$ . The $\ell $ -algebra $X$ is said to have a $\sigma $ -bounded approximate unit if for each positive linear functional $f$ on $X$ the set $\left\{ f(x)\text{: } x \text{ totally } \text{ bounded }\right\} $ is bounded in $\mathbb R $ . In this paper we study the class of $f$ -algebras with a $\sigma $ -bounded approximate unit which contains the class of all unital $f$ -algebras. In particular It is shown that an $f$ -algebra $X$ has a $\sigma $ -bounded approximate unit if and only if the order bidual $X^{\sim \sim }$ is a unital $f$ -algebra.  相似文献   
25.

A reusable and cost-effective magnetic graphite oxide (Fe3O4NPs@GO) nanocomposite was fabricated and applied for pre-purification of paclitaxel from leaf-derived crude extract of Taxus baccata. Furthermore, the potential roles of three crucial criteria (i.e., adsorbent dosage, sorption temperature and agitation/shaking power) on the two responses [i.e., efficiency of plant pigments removal (EPPR) and efficiency of taxol purity (ETP)] were examined and simultaneously optimized through response surface methodology. The nanocomposite was accurately characterized using TEM, AFM, BET, FT-IR, Raman and VSM. Moreover, for both proposed second-degree polynomial regression models, highly significant correlations were achieved between the experimental and predicted data (p < 0.0001). Meanwhile, the optimum conditions to simultaneously acquire the maximum EPPR (94.0 %) and ETP (11.4 %) were recorded as adsorbent dosage of 37.7 g L−1, sorption temperature of 30.7 °C and agitation power of 153.1 rpm; and the predictive results were confirmed using experimental rechecking survey. Interestingly, upon five consecutive treatments, the nanocomposite still exhibited substantial potency in eliminating large amounts of plant pigments and impurities (up to 90 %), without significant reduction on sorption capacity and magnetism thereof. Our results demonstrated that the current nanocomposite, as SPE sorbent for MSPE, could be a simple, fast and reusable approach for HPLC-based purification studies of paclitaxel, and probably other plant secondary metabolites.

  相似文献   
26.
27.
An efficient and environment friendly process for the synthesis of α-aminophosphonates has been devised. Through a one-pot three-component condensation of various aldehydes, amines, and triethyl phosphite in the presence of Fe3O4@SiO2-imid-PMAn nanoparticles as magnetic catalysts under solvent-free conditions and ultrasonic irradiation, α-aminophosphonates were obtained with excellent yields. The reactions under solvent-free conditions at room temperature are compared with the ultrasonic-assisted reactions. This new procedure has notable advantages such as short reaction time, excellent yields, easy purification, and the absence of any tedious workup or purification. The aforementioned catalyst could be easily recovered by an external magnetic field and can be reused for six consecutive reaction cycles without significant loss of activity. In addition, SEM and DLS of the catalyst after the reaction cycle were investigated.  相似文献   
28.
An efficient, green and eco-friendly protocol has been developed for the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles via one-pot condensation reaction using Dendrimer-PWAn as catalyst under solvent-free conditions or ultrasonic irradiation in excellent yields. The reactions under conventional heating conditions were compared with the ultrasonic-assisted reactions. The operational simplicity, practicability and applicability of this protocol to various substrates make it an interesting alternative to previous procedures. The present methodology offers several advantages such as excellent yields, short reaction times, a cleaner reaction, and the absence of any tedious work-up or purification. The catalyst is easily separated from the products by filtration and also exhibits remarkable reusable activity. SEM, BET and DLS of the catalyst were also investigated after each reaction cycle.  相似文献   
29.
Over the last decade, the use of nanocellulose in advanced technological applications has been promoted both due the excellent properties of this material in combination with its renewability. In this study, multilayered thin films composed of nanofibrillated cellulose (NFC), polyvinyl amine (PVAm) and silica nanoparticles were fabricated on polydimethylsiloxane (PDMS) using a layer-by-layer adsorption technique. The multilayer build-up was followed in situ by quartz crystal microbalance with dissipation, which indicated that the PVAm-SiO(2)-PVAm-NFC system adsorbs twice as much wet mass material compared to the PVAm-NFC system for the same number of bilayers. This is accompanied with a higher viscoelasticity for the PVAm-SiO(2)-PVAm-NFC system. Ellipsometry indicated a dry-state thickness of 2.2 and 3.4 nm per bilayer for the PVAm-NFC system and the PVAm-SiO(2)-PVAm-NFC system, respectively. Atomic force microscopy height images indicate that in both systems, a porous network structure is achieved. Young's modulus of these thin films was determined by the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) technique. The Young's modulus of the PVAm/NFC films was doubled, from 1 to 2 GPa, upon incorporation of silica nanoparticles in the films. The introduction of the silica nanoparticles lowered the refractive index of the films, most probably due to an increased porosity of the films.  相似文献   
30.
The collision problems of two-parameter random walks are studied. That is, some criteria have been established in terms of the characteristic functions of two or more mutually independent random walks in order to determine if they meet infinitly often in certain restricted time sets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号