全文获取类型
收费全文 | 227篇 |
免费 | 6篇 |
国内免费 | 2篇 |
专业分类
化学 | 171篇 |
晶体学 | 4篇 |
力学 | 7篇 |
数学 | 26篇 |
物理学 | 27篇 |
出版年
2023年 | 2篇 |
2022年 | 6篇 |
2021年 | 10篇 |
2020年 | 7篇 |
2019年 | 10篇 |
2018年 | 11篇 |
2017年 | 7篇 |
2016年 | 13篇 |
2015年 | 8篇 |
2014年 | 9篇 |
2013年 | 24篇 |
2012年 | 20篇 |
2011年 | 18篇 |
2010年 | 11篇 |
2009年 | 9篇 |
2008年 | 12篇 |
2007年 | 10篇 |
2006年 | 7篇 |
2005年 | 9篇 |
2004年 | 7篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 4篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有235条查询结果,搜索用时 15 毫秒
31.
Sedigheh Alavinia Ramin Ghorbani-Vaghei Jamshid Rakhtshah Jaber Yousefi Seyf Iman Ali Arabian 《应用有机金属化学》2020,34(3):e5449
A porous cross-linked poly (ethyleneamine)-polysulfonamide (PEA-PSA) as a novel organic support system is synthesized in the presence of silica template by nanocasting technique. The paper demonstrates immobilization of CuI nanoparticles inside the pores (PEA-PSA@CuI) for the facile recovery and recycling of these nanoparticles. The presence of porous PEA-PSA and PEA-PSA@CuI nanocomposites was confirmed using FT-IR spectroscopy, FE-SEM, EDX, TGA, XRD, TEM, BET, XPS, WDX, 1H NMR, and ICP-OES techniques. The PEA-PSA@CuI along with Ag(I)/K2S2O8 was implemented as a reusable cooperative catalyst-oxidant system in the N-arylation of p-toluenesulfonamide with substituted carboxylic acids in mild condition. So, the novel decarboxylative cross-coupling catalyzed by copper and silver has been developed. Aromatic, secondary and tertiary aliphatic acids underwent high efficient decarboxylative processes with p-toluenesulfonamide to afford the corresponding products. This method provides a practical approach for the flexible synthesis of sulfonamides from the readily affordable substrates. The catalyst is highly reusable and efficient, especially in terms of time and yield of the desired product. 相似文献
32.
Over the last decade, the use of nanocellulose in advanced technological applications has been promoted both due the excellent properties of this material in combination with its renewability. In this study, multilayered thin films composed of nanofibrillated cellulose (NFC), polyvinyl amine (PVAm) and silica nanoparticles were fabricated on polydimethylsiloxane (PDMS) using a layer-by-layer adsorption technique. The multilayer build-up was followed in situ by quartz crystal microbalance with dissipation, which indicated that the PVAm-SiO(2)-PVAm-NFC system adsorbs twice as much wet mass material compared to the PVAm-NFC system for the same number of bilayers. This is accompanied with a higher viscoelasticity for the PVAm-SiO(2)-PVAm-NFC system. Ellipsometry indicated a dry-state thickness of 2.2 and 3.4 nm per bilayer for the PVAm-NFC system and the PVAm-SiO(2)-PVAm-NFC system, respectively. Atomic force microscopy height images indicate that in both systems, a porous network structure is achieved. Young's modulus of these thin films was determined by the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) technique. The Young's modulus of the PVAm/NFC films was doubled, from 1 to 2 GPa, upon incorporation of silica nanoparticles in the films. The introduction of the silica nanoparticles lowered the refractive index of the films, most probably due to an increased porosity of the films. 相似文献
33.
Ghaedi M Amirabad SZ Marahel F Nasiri Kokhdan S Sahraei R Nosrati M Daneshfar A 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,83(1):46-51
In the first, Cadmium selenide Nanoparticle loaded on activated carbon (CdSe-NP-AC) has been synthesized and characterized by different techniques including XRD and SEM. Then, this new adsorbent successfully has been applied for the removal of muroxide (MO) from aqueous solution in batch studies, while the effect of various experimental parameters like initial pH (pH(0)), contact time, amount of (CdSe-NP-AC) and initial MO concentration (C(0)) on its removal percentage was examined by one at a time optimization method. It was found following optimization of variable, the adsorption of MO onto (CdSe-NP-AC) followed pseudo-second-order kinetics and show Tempkin and Langmuir models for interpretation of experimental data. It was observed that by increasing the temperature the removal percentage was improved and the positive change in entropy (ΔS°) and heat of adsorption (ΔH°) show the endothermic nature of process, while the high negative value in Gibbs free energy change (ΔG°) indicates the feasible nature of adsorption process. 相似文献
34.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
35.
Omid Jahanmahin Mohammad Mehdi Montazer Rahmati Toraj Mohammadi Jaber Babaee Arash Khosravi 《Chemical Papers》2016,70(7):913-925
In this study, a novel flat-type synergic-supported liquid membrane was evaluated with a mixture of N-methyl-N,N,N-trioctylammonium chloride (Aliquat 336) and tributyl phosphate (TBP) as the carrier and kerosene as the diluent to remove Cr(VI) from synthetic waste water. The main parameters involved in the process were identified and optimised. The parameters were divided into two groups, those that were independent and those having an interaction. The parameters of the carrier/kerosene volumetric proportion and stirring rate were optimised individually due to their nature. The optimal values of these parameters were 0.5 and 500 min?1, respectively, for a constant carrier/kerosene ratio and stirring rate in the designed experiments using the response surface method (RSM). The four parameters of TBP/Aliquat 336, chromium concentration in the feed phase, feed and product pH were optimised using RSM; it was observed that the TBP/Aliquat 336 ratio, feed pH, pH of the stripping phase and interaction of this parameter with feed concentration have the most important effects on the removal of Cr(VI). The optimal levels of these parameters were 0.61, 71.75 mg L?1, 3.5 and 12.66 for the ratio of TBP/Aliquat 336, feed chromium concentration, pH of the feed and pH of the product, respectively. An experimental removal rate of 94.63 % at the optimized levels was obtained. 相似文献
36.
The stability constants of complexes of dioxovanadium (V) ion and L-asparrtic acid were determined potentiometrically at various
ionic strengths of I = 0.1, 0.3, 0.5, and 0.7 mol. dm−3 at 25°C. A sodium chloride solution was used to maintain the ionic strength. The parameters based on these formation constants
were calculated and the dependence of protonation and the stability constants on ionic strength are described by a Debye-Huckel
type equation. 相似文献
37.
The vapor pressures and osmotic coefficients of solutions of (R4N)2[MoS4] (R = ethyl, n-propyl and n-butyl) in acetone have been measured by head space-gas chromatography (HS-GC). Experimental data for the osmotic coefficients have been expressed by three thermodynamic models including the ionic interaction model of Pitzer, the electrolyte non-random two liquid (e-NRTL) model and the non-random factor (NRF) model. The ability of the models to fit the osmotic coefficient was compared on the basis of the standard deviation of the fittings. The results show that the considered models provide reliable results, but the Pitzer's model gives better results than the NRTL and the NRF methods, especially in the dilute region. 相似文献
38.
Issa Yavari Loghman Moradi Farough Nasiri Hoorieh Djahaniani 《Monatshefte für Chemie / Chemical Monthly》2005,36(9):1757-1761
The regioselective reaction of N1-benzyl-N2-(4-nitrophenyl)ethanediamide with dialkyl acetylenedicarboxylates or alkyl propiolates in the presence of triphenylphosphine
leads to dialkyl 4-benzylamino-1-(4-nitrophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-2,3-dicarboxylates or alkyl 4-benzylamino-1-(4-nitrophenyl)-2-oxo-5-pyrrolidinecarboxylates in good yields. 相似文献
39.
A three-dimensional numerical simulation has been performed to study the growth of Ge0.98Si0.02 by the Traveling Solvent Method. We attempted to suppress the buoyancy convection, in the Ge0.98Si0.02 melt zone, by applying axial and rotating magnetic fields. The effects of the applied magnetic field intensity, on the transport structures in the melt (flow and concentration fields, heat and mass transfer), have been investigated in detail. The steady-state full Navier–Stokes equations, as well as energy, mass species transport and continuity equations are numerically solved using the finite element method. By applying an axial magnetic field of various intensities (2, 10, and 22 mT), we found that as the axial magnetic field increases, the silicon distribution nearby the growth interface becomes more uniform. In the case of a rotating magnetic field, with different applied rotational speeds (2, 7 and 10 rpm), we found that such kind of magnetic field has a marked effect on the silicon concentration, which changes its shape from a convex one to a nearly flat shape as the magnetic field intensity increases. An alternative method to reduce or suppress buoyancy convection, in the melt zone, is the growing of the sample in a microgravity environment, with a gravity level of at least 10?4 the earth normal gravity level; in this case the results revealed smooth and almost perfect straight concentration contours, due to the buoyancy convection weakness. 相似文献
40.