首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   4篇
  国内免费   3篇
化学   213篇
晶体学   7篇
力学   3篇
数学   30篇
物理学   33篇
  2023年   1篇
  2019年   4篇
  2018年   3篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   17篇
  2012年   15篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   22篇
  2007年   13篇
  2006年   22篇
  2005年   25篇
  2004年   21篇
  2003年   14篇
  2002年   17篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   11篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
  1966年   1篇
  1955年   2篇
  1939年   1篇
  1937年   2篇
  1936年   1篇
  1928年   1篇
  1924年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
61.
62.
The rate-determining deprotonation of 5-nitrobenzisoxazole (Kemp elimination) by hydroxide is efficiently catalyzed by vesicles formed from dimethyldioctadecylammonium chloride (C(18)()C(18)()(+)()). Gradual addition of sodium didecyl phosphate (C(10)()C(10)()(-)()) leads to the formation of catanionic vesicles, which were characterized by cryo-electron microscopy, and their main phase transition temperatures (DSC) and zeta-potentials. Increasing percentages of C(10)()C(10)()(-)() in the vesicular bilayers decrease the catalysis of the Kemp elimination. A detailed kinetic analysis, supported by consideration of substrate binding site polarities and counterion binding percentages, suggest that the catalytic effects of C(18)()C(18)()(+)()/C(10)()C(10)()(-)() catanionic vesicles are primarily determined by the binding of catalytically active hydroxide ions to the vesicular surface area. The formation of neutral microdomains between 10 and 30 mol % of C(10)()C(10)()(-)() in the bilayer, as revealed by DSC, is not apparent from the catalytic effects found for these vesicles. Interestingly, the catalytic effects observed for 50 mol % C(10)()C(10)()(-)() in the catanionic vesicles indicate an asymmetric distribution of C(18)()C(18)()(+)() and C(10)()C(10)()(-)() over the bilayer leaflets. The overall kinetic results illustrate the highly complex mix of factors which determines catalytic effects on reactions occurring in biological cell membranes.  相似文献   
63.
Vesicles formed from synthetic, double-tailed amphiphiles are often used as mimics for biological membranes. However, biological membranes are a complex mixture of various compounds. In the present paper we describe a first attempt to study the importance of additives on vesicular catalysis. The rate-determining deprotonation of 5-nitrobenzisoxazole (Kemp elimination) by hydroxide ion is efficiently catalysed by vesicles formed from dimethyldi-n-octadecylammonium chloride (C(18)C(18)(+)) as a result of (partial) dehydration of the reactants (especially the hydroxide ion) at the vesicular binding sites. Gradual addition of linear alcohols, such as n-decanol (C(10)OH), n-octadecanol (C(18)OH) and batyl alcohol (C(18)GlyOH) leads to a decrease in the observed catalysis. By contrast, gradual addition of oleyl alcohol, n-dodecyl-beta-glucoside (C(12)Glu) and n-dodecyl-beta-maltoside (C(12)Mal) leads to an increase in the observed catalysis. A detailed kinetic analysis, taking into account substrate binding site polarities, counterion binding percentages and binding affinity of the kinetic probe, suggests that the catalytic changes depend strongly on subtle changes in the structure of the additive. Whereas the C(12)Glu-induced effect can be explained by an increase in the vesicular rate constant, the effect of C(12)Mal can only be explained by an increase in the binding constant of the kinetic probe. However, for these pyranoside-containing vesicles others factors, such as a more extensive dehydration of the hydroxide ion, and micelle formation have to be considered. For the linear alcohols, besides a decrease in the counterion binding, changes in the vesicular rate constant and the binding constant should be taken into account. These two parameters change to a different extent for the different alcohols. The kinetic analysis is supported by differential scanning calorimetry (DSC), E(T)(30) absorbance data and Nile Red, Laurdan, ANS and pyrene fluorescence measurements.The overall kinetic results are illustrative for the highly complex mix of factors which determines catalytic effects on reactions occurring in biological cell membranes.  相似文献   
64.
Combination of the [Ni(bpy)3]2+ cation complex and the [Pd(dmit)2] anion (dmit=C3S52−=1,3-dithiole-2thione-4,5-dithiolate) has resulted in the paramagnetic [Ni(bpy)3][Pd(dmit)2]·CH3CN compound, a suitable precursor for a molecular magnetic conductor. Its crystal structure consists of a Pd(dmit)2 anion arrangement that is quite different from segregated stack layers often found for M(dmit)2−based compounds. The reduction of the [Pd(dmit)2]- to the 2− charged anion in the title compound most probably is the result of a charge disproportionation between Pd(dmit)2 anions.  相似文献   
65.
66.
The synthesis and characterisation of a series of chiral and achiral low molecular weight organogelators (LMWGs) based on bis-amide substituted dithienylethene photochromic switches is reported. The LMWGs gelate a range of solvents depending on the specific functionalisation of the hydrogen bonding amide groups. In mixtures of chiral and achiral LMWGs the stereochemical outcome of the chiral aggregation is determined by the chiral LMWG molecules in most cases. However, for the first time we demonstrate that the stereochemical outcome of the aggregation can be influenced by the achiral LWMG molecules in some cases. Furthermore specific π-π (and/or van der Waals) interactions of chiral LMWGs 1-3o with the solvent allow the solvent to influence the control of chirality of aggregation. This influence of the solvent has a dramatic effect on whether four- or two-gel states are available.  相似文献   
67.
Human acetylcholinesterase (AChE) is a widely studied target enzyme in drug discovery for Alzheimer’s disease (AD). In this paper we report evaluation of the optimum structure and chemistry of the supporting material for a new AChE-based fluorescence sensing surface. To achieve this objective, multilayered silicon wafers with spatially controlled geometry and chemical diversity were fabricated. Specifically, silicon wafers with silicon oxide patterns (SiO2/Si wafers), platinum-coated silicon wafers with SiO2 patterns (SiO2/Pt/Ti/Si wafers), and Pt-coated wafers coated with different thicknesses of TiO2 and SiO2 (SiO2/TiO2/Pt/Ti/Si wafers) were labelled with the fluorescent conjugation agent HiLyte Fluor 555. Selection of a suitable material and the optimum pattern thickness required to maximize the fluorescence signal and maintain chemical stability was performed by confocal laser-scanning microscopy (CLSM). Results showed that the highest signal-to-background ratio was always obtained on wafers with 100 nm thick SiO2 features. Hence, these wafers were selected for covalent binding of human AChE. Batch-wise kinetic studies revealed that enzyme activity was retained after immobilization. Combined use of atomic-force microscopy and CLSM revealed that AChE was homogeneously and selectively distributed on the SiO2 microstructures at a suitable distance from the reflective surface. In the optimum design, efficient fluorescence emission was obtained from the AChE-based biosensing surface after labelling with propidium, a selective fluorescent probe of the peripheral binding site of AChE.
Figure
Micropatterned silicon wafers containing covalently bound human acetylcholinesterase. The binding and displacement of the fluorescent probe propidium (red areas) from the enzyme's peripheral binding site is visualized by scanning laser microscopy  相似文献   
68.
One of the major challenges in lipidomics is to obtain as much information about the lipidome as possible. Here, we present a simple yet universal high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method to separate molecular species of all phospholipid classes in one single run. The method is sensitive, robust and allows lipid profiling using full scan mass spectrometry, as well as lipid class specific scanning in positive and negative ionisation mode. This allows high-throughput processing of samples for lipidomics, even if different types of MS analysis are required. Excellent separation of isobaric and even isomeric species is achieved, and original levels of lyso-lipids can be determined without interference from lyso-lipids formed from diacyl species by source fragmentation. As examples of application of this method, more than 400 phospholipid species were identified and quantified in crude phospholipid extracts from rat liver and the parasitic helminth Schistosoma mansoni.  相似文献   
69.
70.
The title compound, tris­[2‐(4,5‐dihydrooxazol‐2‐yl‐κN)phenolato‐κO]­iron(III), [Fe(C9H8NO2)3], is disordered over a non‐crystallographic twofold rotation axis perpendicular to the crystallographic threefold rotation axis. The disorder can be a pure rotational disorder of an iron complex in the facial configuration, or the consequence of a mixture of facial and meridional configurations. In the latter case, at least 25% of the iron complexes must adopt the facial configuration in order to obtain the disorder ratio observed in the crystal.  相似文献   
[首页] « 上一页 [2] [3] [4] [5] [6] 7 [8] [9] [10] [11] [12] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号