首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1355篇
  免费   183篇
  国内免费   298篇
化学   1058篇
晶体学   19篇
力学   110篇
综合类   20篇
数学   162篇
物理学   467篇
  2024年   10篇
  2023年   38篇
  2022年   81篇
  2021年   70篇
  2020年   89篇
  2019年   85篇
  2018年   58篇
  2017年   53篇
  2016年   63篇
  2015年   78篇
  2014年   85篇
  2013年   104篇
  2012年   100篇
  2011年   131篇
  2010年   103篇
  2009年   89篇
  2008年   105篇
  2007年   65篇
  2006年   80篇
  2005年   46篇
  2004年   32篇
  2003年   32篇
  2002年   36篇
  2001年   31篇
  2000年   31篇
  1999年   20篇
  1998年   8篇
  1997年   11篇
  1996年   11篇
  1995年   19篇
  1994年   9篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1971年   1篇
排序方式: 共有1836条查询结果,搜索用时 15 毫秒
31.
Collector OA, oleic acid, is widely used industrially for fluorite flotation. Low selectivity, dispersibility and collecting capability of the OA collector are always observed. In this study, compared with flotation of dolomite, a collector mixture of OA and SPE (styrylphenol polyoxyethylene ether) demonstrated significantly better performances for the fluorite. An optimal mass ratio 4 : 1 OA : SPE was found, and the recovery of fluorite was increased from over 85 % to more than 94 % compared with pure OA. Furthermore, the dosage of the collector agent was reduced from 50 mg mL−1 to 20 mg mL−1, which did not negatively impact the recovery of dolomite. The results from the contact angle tests indicated that SPE selectively increased the surface hydrophobicity of fluorite but had little effect on dolomite. Besides, zeta potential measurements and IR analyses revealed that the addition of SPE led to strong chemical adsorption on the surface of fluorite, resulting in a significant difference in the flotation performances of the two minerals. Therefore, SPE-emulsified OA is corroborated to prompt more selectivity and collecting capability on flotation of fluorite over dolomite.  相似文献   
32.
Zhao S  Xu Z  Zhang F  Jiang W  Huang J  Wang Y  Xu X 《Optics letters》2007,32(15):2094-2096
Based on the facts related to solid-state cathodoluminescence, mixed excitation, and serial excitation recently discovered in our laboratory, a fundamental schematic design and a series of different schematic elaborated designs are proposed for protection from electron accumulation, reasonable use of a luminescent screen, and enhancement of light intensity.  相似文献   
33.
利用蒙特卡罗程序FLUKA模拟计算了聚乙烯慢化球和辅助材料慢化球对低能中子到高能中子的响应函数曲线。结果表明,对纯聚乙烯球来说,随着聚乙烯层厚度的增加,响应曲线峰逐步右移,峰值在高能区有所下降,对20 Me V以上的中子,无论纯聚乙烯球的尺寸有多大,其响应均下降到很低的程度;对辅助材料慢化球来说,中子能量小于1 Me V时,辅助材料慢化球与聚乙烯慢化球的响应曲线相似,但当中子能量大于20 Me V时,中子与辅助材料层发生(n,xn)反应,慢化球的响应呈显著上升趋势。分析计算结果,最终能够确定宽能谱多球中子谱仪的尺寸组合。  相似文献   
34.
本文以4,4'-二甲氧基二苯甲酮、苯乙酮和呋喃甲醛为原料,采用新的路线,6步反应合成了一种新型萘并吡喃类化合物,借助核磁共振、质谱等检测手段对最终产物的结构进行了结构表征,并对其反应条件进行优化,提高了反应收率,最后应用紫外-可见吸收光谱对目标产物在不同溶剂中的光致变色性质进行了初步探索研究。  相似文献   
35.
Single phase delafossite CuFeO2 thin films were synthesized by a simple sol–gel method. The influence of polyethylene glycol (PEG) on the morphology and optoelectronic properties of the films was studied by addition of 1.0 g PEG in 10 ml precursor solution. The crystal sizes of the derived CuFeO2 films with and without addition of PEG were 49 nm, but the sample with addition of PEG (labeled as CFO-PEG) showed weaker c-axis orientation growth. The sample without addition of PEG (labeled as CFO) showed a compact surface without detectable pores and had a thickness around 50 nm. However, the sample CFO-PEG exhibited a porous surface with worm-like grains in nanometric scale and had a thickness around 310 nm. Enhanced absorbance in UV–vis region was observed for the sample CFO-PEG which might ascribe to both the thickness and porous surface. The optical direct bandgaps at near-UV were estimated to be ~3.0 and 3.38 eV for the sample CFO-PEG and CFO, respectively. Though the porous surface of CFO-PEG has improved the absorbance in UV–vis region, the resistivity has also been increased due to the homogeneous distribution of interspaces between the worm-like grains, which makes the incident photon to current efficiency of CFO-PEG lower than that of CFO.  相似文献   
36.
Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a “lure and kill” mechanism designed for PLA2 inhibition (denoted “L&K-NP”). The L&K-NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to “lure” in-coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that “kills” PLA2 upon enzymatic attack. Both compounds are integrated into the L&K-NP structure, which voids toxicity associated with free molecules. In the study, L&K-NPs effectively inhibit PLA2-induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K-NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K-NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti-PLA2 approach.  相似文献   
37.
The high reactive oxygen species (ROS) generation ability and simple construction of sonosensitizer systems remain challenging in sonodynamic therapy against the hypoxic tumor. In this work, we rationally prepared MOF-derived double-layer hollow manganese silicate nanoparticle (DHMS) with highly effective ROS yield under ultrasound irradiation for multimodal imaging-guided sonodynamic therapy (SDT). The presence of Mn in DHMS increased ROS generation efficiency because it could be oxidized by holes to improve the electron–hole separation. Moreover, DHMS could produce oxygen in the tumor microenvironment, which helps overcome the hypoxia of the solid tumor and thus enhance the treatment efficiency. In vivo experiments demonstrated efficient tumor inhibition in DHMS-mediated SDT guided by ultrasound and magnetic resonance imaging. This work presents a MOF-derived nanoparticle with sonosensitive and oxygen generating ability, which provides a promising strategy for tumor hypoxia in SDT.  相似文献   
38.
Direct methanol fuel cells (DMFCs), as one of the important energy conversion devices, are of great interest in the fields of energy, catalysis and materials. However, the application of DMFCs is presently challenged because of the limited activity and durability of cathode catalysts as well as the poisoning issues caused by methanol permeation to the cathode during operation. Herein, we report a new class of Rh-doped PdCu nanoparticles (NPs) with ordered intermetallic structure for enhancing the activity and durability of the cathode for oxygen reduction reaction (ORR) and achieving superior methanol tolerance. The disordered Rh-doped PdCu NPs can be prepared via a simple wet-chemical method, followed by annealing to convert it to ordered phases. The results of transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), power X-ray diffraction (PXRD) analysis and high resolution TEM (HRTEM) successfully demonstrate the formation of near-spherical NPs with an average size of 6.5 ± 0.5 nm and the conversion of the phase structure. The complete phase transition temperatures of Rh-doped PdCu NPs and PdCu are 500 and 400 ℃, respectively. The molar ratio of Rh/Pd/Cu in the as-synthesized Rh-doped PdCu NPs is 5/48/47. Benefitting from Rh doping and the presence of the ordered intermetallic structure, the Rh-doped PdCu intermetallic electrocatalyst achieves the maximum ORR mass activity of 0.96 A·mg-1 at 0.9 V versus reversible hydrogen electrode (RHE) under alkaline conditions—a 7.4-fold enhancement compared to the commercial Pt/C catalyst. For different electrocatalysts, the ORR activities follow the sequence, ordered Rh-doped PdCu intermetallics > ordered PdCu intermetallics > disordered Rh-doped PdCu NPs > disordered PdCu NPs > commercial Pt/C catalyst. In addition, the distinct structure endows the Rh-doped PdCu intermetallics with highly stable ORR durability with unaltered half-wave potential (E1/2) and mass activity after continuous 20000 cycles, which are higher than those of other electrocatalysts. Furthermore, the E1/2 of the Rh-doped PdCu intermetallics decreases by only 5 mV after adding 0.5 mol·L-1 methanol to the electrolyte, while the commercial Pt/C catalyst negatively shifts by 235 mV and a distinct oxidation peak can be observed. The results indicate that the ORR activity of the Rh-doped PdCu intermetallic electrocatalyst can be well maintained even in the presence of poisoning environment. Our results have demonstrated that Rh-doped PdCu NPs with ordered intermetallic structures is a potential electrocatalyst toward the next-generation high-performance DMFCs.  相似文献   
39.
Summary of main observation and conclusion A Pd-catalyzed asymmetric aromative[4+3]-cyclization reaction of amino-trimethylenemethanes(TMM,1d,ip3-oles)with fused 1-azadienes has been developed.This method enables access to the synthetically importance and biologically active benzofuran fused azepines and indeno-azepines in excellent efficiency and stereoselectivity(up to 95%yield,99%ee,>19:1 dr).  相似文献   
40.
The core-shell structured Au@Bi2S3 nanorods have been prepared through direct in-situ growth of Bi2S3 at the surface of pre-synthesized gold nanorods.The product was characterized by X-ray diffraction,transmission electron microscopy and energy-dispersive X-ray spectroscopy.Then the obtained Au@Bi2S3 nanorods were coated onto glassy carbon electrode to act as a scaffold for fabrication of electrochemical DNA biosensor on the basis of the coordination of-NH2 modified on 5’-end of probe DNA and Au@Bi2S3.Electrochemical characterization assays demonstrate that the Au@Bi2S3 nanorods behave as an excellent electronic transport channel to promote the electron transfer kinetics and increase the effective surface area by their nanosize effect.The hybridization experiments reveal that the Au@Bi2S3 matrix-based DNA biosensor is capable of recognizing complementary DNA over a wide concentration ranging from 10 fmol/L to 1 nmol/L.The limit of detection was estimated to be 2 fmol/L(S/N=3).The biosensor also presents remarkable selectivity to distinguish fully complementa ry sequences from basemismatched and non-complementary ones,showing great promising in practical application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号