首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   11篇
化学   119篇
数学   9篇
物理学   47篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   14篇
  2011年   9篇
  2010年   4篇
  2009年   12篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   7篇
  2000年   10篇
  1999年   6篇
  1998年   3篇
  1996年   10篇
  1995年   3篇
  1994年   10篇
  1993年   6篇
  1992年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1969年   1篇
排序方式: 共有175条查询结果,搜索用时 140 毫秒
131.
JM Cline 《Pramana》2000,55(1-2):33-42
I review recent progress on the electroweak phase transition and baryogenesis, focusing on the minimal supersymmetric Standard Model as the source of new physics.  相似文献   
132.
133.
The chemistry of cationic forms of clusterfullerenes remain less explored than that of the corresponding neutral or anionic species. In the present work, M3N@Ih-C80 (M=Sc or Lu) cations were generated by both electrochemical and chemical oxidation methods. The as-obtained cations successfully underwent the typical Bingel–Hirsch reaction that fails with neutral Sc3N@Ih-C80. Two isomeric Sc3N@Ih-C80 cation derivatives, [5,6]-open and [6,6]-open adducts, were synthesized, and the former has never been prepared by means of a Bingel–Hirsch reaction with neutral clusterfullerenes. In the case of the Lu3N@Ih-C80 cation, however, only a [6,6]-open adduct was obtained. Density functional theory (DFT) calculations indicated that the oxidized M3N@Ih-C80 was much more reactive than the neutral compound upon addition of the diethyl bromomalonate anion. The Bingel–Hirsch reaction of M3N@Ih-C80 cations occurred by means of an unusual outer-sphere single-electron transfer (SET) process from the diethyl bromomalonate anion to the stable intermediate [M3N@C80(C2H5COO)2CBr].. Remarkably, the diethyl bromomalonate anion was found to act as both a nucleophile and an electron donor.  相似文献   
134.
135.
The first members of a promising new family of hybrid amino acid–polyoxometalates have emerged from a search for modular functional molecules. Incorporation of glycine (Gly) or norleucine (Nle) ligands into an yttrium‐tungstoarsenate structural backbone, followed by crystallization with p‐methylbenzylammonium (p‐MeBzNH3+) cations, affords (p‐MeBzNH3)6K2(GlyH)[AsIII4(YIIIWVI3)WVI44YIII4O159(Gly)8‐ (H2O)14] ? 47 H2O ( 1 ) and enantiomorphs (p‐MeBzNH3)15(NleH)3 [AsIII4(MoV2MoVI2)WVI44YIII4O160(Nle)9(H2O)11][AsIII4(MoVI2WVI2)‐ WVI44YIII4O160(Nle)9(H2O)11] (generically designated 2 : L ‐Nle, 2 a ; D ‐Nle, 2 b ). An intensive structural, spectroscopic, electrochemical, magnetochemical and theoretical investigation has allowed the elucidation of site‐selective metal substitution and photoreduction of the tetranuclear core of the hybrid polyanions. In the solid state, markedly different crystal packing is evident for the compounds, which indicates the role of noncovalent interactions involving the amino acid ligands. In solution, mass spectrometric and small‐angle X‐ray scattering studies confirm maintenance of the structure of the polyanions of 2 , while circular dichroism demonstrates that the chirality is also maintained. The combination of all of these features in a single modular family emphasizes the potential of such hybrid polyoxometalates to provide nanoscale molecular materials with tunable properties.  相似文献   
136.
A new cluster fullerene, Sc2O@Td(19151)‐C76, has been isolated and characterized by mass spectrometry, UV/Vis/NIR absorption, 45Sc NMR spectroscopy, cyclic voltammetry, and single‐crystal X‐ray diffraction. The crystallographic analysis unambiguously assigned the cage structure as Td(19151)‐C76, which is the first tetrahedral fullerene cage characterized by single‐crystal X‐ray diffraction. This study also demonstrated that the Sc2O cluster has a much smaller Sc?O?Sc angle than that of Sc2O@Cs(6)‐C82 and the Sc2O unit is fully ordered inside the Td(19151)‐C76 cage. Computational studies further revealed that the cluster motion of the Sc2O is more restrained in the Td(19151)‐C76 cage than that in the Cs(6)‐C82 cage. These results suggest that cage size affects not only the shapes but also the cluster motion inside fullerene cages.  相似文献   
137.
Supramolecular nanocapsule 1 ?(BArF)8 is able to sequentially and selectively entrap recently discovered U2@C80 and unprecedented Sc2CU@C80, simply by soaking crystals of 1 ?(BArF)8 in a toluene solution of arc‐produced soot. These species, selectively and stepwise absorbed by 1 ?(BArF)8, are easily released, obtaining highly pure fractions of U2@C80 and Sc2CU@C80 in one step. Sc2CU@C80 represents the first example of a mixed metal actinide‐based endohedral metallofullerene (EMF). Remarkably, the host–guest studies revealed that 1 ?(BArF)8 is able to discriminate EMFs with the same carbon cage but with different encapsulated cluster and computational studies provide support for these observations.  相似文献   
138.
A family of novel titanasiloxanes containing the structural unit {[Ti(eta(5)-C(5)Me(5))O](3)} were synthesized by hydron-transfer processes involving reactions with equimolecular amounts of mu(3)-alkylidyne derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu(3)-CR)] (R=H (1), Me (2)) and monosilanols, R(3)'Si(OH), silanediols, R(2)'Si(OH)(2), and the silanetriol tBuSi(OH)(3). Treatment of 1 and 2 with triorganosilanols (R'=Ph, iPr) in hexane affords the new metallasiloxane derivatives [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-CHR)(OSiR(3)')] (R=H, R'=Ph (3), iPr (4); R=Me, R'=Ph (5), iPr (6)). Analogous reactions with silanediols, (R'=Ph, iPr), give the cyclic titanasiloxanes [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(2)SiR'(2))(R)] (R=Me, R'=Ph (7), iPr (8); R=Et, R'=Ph (9), iPr (10)). Utilization of tBuSi(OH)(3) with 1 or 2 at room temperature produces the intermediate complexes [{Ti(eta(5)-C(5)Me(5)) (mu-O)}(3)(mu-O(2)Si(OH)tBu)(R)] (R=Me (11), Et(12)). Further heating of solutions of 11 or 12 affords the same compound with an adamantanoid structure, [{Ti(eta(5)-C(5)Me(5))(mu-O)}(3)(mu-O(3)SitBu)] (13) and methane or ethane elimination, respectively. The X-ray crystal structures of 3, 4, 6, 8, 10, 12, and 13 have been determined. To gain an insight into the mechanism of these reactions, DFT calculations have been performed on the incorporation of monosilanols to the model complex [{Ti(eta(5)-C(5)H(5))(mu-O)}(3)(mu(3)-CMe)] (2 H). The proposed mechanism consists of three steps: 1) hydron transfer from the silanol to one of the oxygen atoms of the Ti(3)O(3) ring, forming a titanasiloxane; 2) intramolecular hydron migration to the alkylidyne moiety; and 3) a mu-alkylidene ligand rotation to give the final product.  相似文献   
139.
We analyze the electronic structure of carbide endohedral metallofullerenes of the type Sc(2)C(2)@C(82) and study the possibility of rotation of the encapsulated Sc(2)C(2) moiety in the interior of the cage. Moreover, we rationalize the higher abundance of M(2)C(2)@C(82) (M = Sc, Y) in which the metal-carbide cluster is encapsulated in the C(3v)-C(82):8 carbon cage with respect to other carbides of the same family on the basis of the formal transfer of four electrons from the cluster to the cage and sizeable (LUMO-3)-(LUMO-2) gap in the empty cages. This rule also applies to all those endohedral metallofullerenes in which the encapsulated cluster transfers four electrons to the carbon cage as, for example, the reduced [M@C(82)](-) systems (M = group 3 or lanthanide metal ion).  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号