A nonresonant, femtosecond (fs) laser is employed to desorb samples of Victoria blue deposited on stainless steel or indium tin oxide (ITO) slides using either electrospray deposition (ESD) or dried droplet deposition. The use of ESD resulted in uniform films of Victoria blue whereas the dried droplet method resulted in the formation of a ring pattern of the dye. Laser electrospray mass spectrometry (LEMS) measurements of the ESD-prepared films on either substrate were similar and revealed lower average relative standard deviations for measurements within-film (20.9%) and between-films (8.7%) in comparison to dried droplet (75.5% and 40.2%, respectively). The mass spectral response for ESD samples on both substrates was linear (R2?>?0.99), enabling quantitative measurements over the selected range of 7.0?×?10?11 to 2.8?×?10?9 mol, as opposed to the dried droplet samples where quantitation was not possible (R2?=?0.56). The limit of detection was measured to be 210 fmol.
Studies in chemical evolution are intended to demonstrate how compounds of biological importance are generated from substances that could have been found in abiotic conditions on the primitive Earth or in extraterrestrial environments. In this context, the aim of the present work was to examine the behavior of dl-glyceraldehyde in both aqueous solution and solid samples under gamma irradiation. We irradiated dl-glyceraldehyde at different doses and temperatures with a gamma source; even at low doses and temperature (77 K), free radicals were detected. Among the products formed were ethylene glycol and glycolaldehyde. Some sugar-like compounds were also detected.
The disinfection of the inner surface of a medical device has long been a challenge for the central sterile supply departments. Dental unit waterline system (DUWLs) foster the attachment of microorganisms and development of biofilm, which lead to continuous contamination of the outlet water from dental units; this contamination may be responsible for a potential risk of infection due to the exposure of patients and medical staff. The present study investigated the disinfection effects of cold atmospheric plasma-activated water (CAPAW) on DUWLs using a model of 5-day-old Enterococcus faecalis biofilm. The results showed that the colony-forming unit was reduced from 107 to 0 after 5 min of treatment. The physicochemical properties of CAPAW were evaluated, including the pH value, oxidation reduction potential, and NO radical. The results showed that the inactivation mechanisms were mainly triggered by the reactive oxygen/nitrogen species. Additionally, CAPAW had a metal corrosion rate same as that of deionized water. We conclude that CAPAW can be applied as an appropriate alternative disinfectant against biofilm contamination of DUWLs. 相似文献
Two composite supports with a mixed inorganic–organic structure were synthesized: BTAl and UTAl. Hydrophilic–hydrophobic dual properties of the supports were suitable for preparing egg-shell-supported metal catalysts for selective hydrogenation reactions. The catalysts were characterized by ICP, XRD, OM, TEM, EPMA, XPS and TGA. Their mechanical resistance was assessed. Activity and selectivity were tested with the hydrogenation of 2,3-butanedione (diacetyl) to 3-hydroxy-2-butanoneacetoin (acetoin). The same order of increasing metal particle size was found for the two tested supports: Pt < Ru < Pd. The XPS analysis showed that the metal/composite catalysts reduced in H2 at 503 K had two kinds of active sites: reduced (Me°) and electron-deficient (Me+). It was rationalized that the hydrogen bond cleavage was performed on the Me° active sites, while reactant adsorption occurred on the Me+ sites. The differences in activity and selectivity between the composite catalysts were attributed to electronic effects on the different metals and to different adsorptive properties of the different polymers. The high selectivity to acetoin was attributed to the preferential adsorption of diacetyl as compared to the adsorption of acetoin. The BTAl catalysts were slightly more active and selective than the UTAl ones. This was attributed to electronic effects caused by remnant organic groups on the composite supports (urethane or biphenyl on UTAl or BTAl, respectively). Pd-BTAl was the most active and selective catalyst, a fact related to electronic effects of both palladium and the support. 相似文献
The beneficial effect of materials with high aspect ratio as composite reinforcement has prompted continuous interest towards cellulosic fibers. Besides providing stiffness, fibers can potentially contribute to composite extensibility. While mechanical treatments are typically used to adjust the physical and surface properties of fibers, less is known about ensuing effects on their extensibility and that of associated networks. Fiber network dimensional extensibility of 16% was achieved by processing the precursor aqueous fiber dispersions following a simple mechanical treatment with a judicious combination of low (PFI refining) and high concentrations and temperatures (Wing defibrator). Consequently, deformation of fibers and increased inter-fiber bonding resulted in a three-fold increase in strength to rupture of the fiber network leading to the structures with unprecedented toughness. 相似文献
The preparation of composites by thermoforming of intermingled fibre slivers is an efficient method to receive high performance and lightweight materials. Cellulosic fibres have benefits like low density and sustainability but the sorption of water due to the high hydrophilicity of the cellulose requires attention. The swelling of the wet fibres changes the fibre-matrix adhesion and as a consequence, the mechanical strength of the composite is influenced negatively. In this study, the thermoplastic polypropylene was combined with lyocell fibres as reinforcement. Moisture sorption isotherms of cellulose/polypropylene composites were recorded as function of relative humidity. Additionally, the specific surface area was analysed by the Brunauer–Emmett–Teller model. It has been found, that the moisture sorption is influenced by the polypropylene (PP) ratio in the composites. At 60% relative humidity the moisture uptake of the lyocell fibres was reduced from 10.8 to 5.8% for lyocell embedded in a composite with 50% polypropylene. Besides the hysteresis between moisture sorption/desorption cycles was found to be proportional to the increased content of PP. The “Parallel Exponential Kinetics” (PEK) model was used to analyse the kinetics of moisture sorption of these composites in more detail. With the help of the PEK model the sorption/desorption kinetics were described by a fast and slow moisture sorption/desorption process. The capacity for rapid moisture sorption is reduced by the formation of PP layers on the lyocell surface. The share of slow moisture sorption increased with increasing PP content in the composite. The results support understanding of the interaction of water with cellulose containing composites. 相似文献
Journal of Sol-Gel Science and Technology - The influence of the hydration and drying process on the line shape and signal intensity of the electron paramagnetic resonance spectra recorded from... 相似文献
This paper presents a meta-algorithm for approximating the Pareto optimal set of costly black-box multiobjective optimization problems given a limited number of objective function evaluations. The key idea is to switch among different algorithms during the optimization search based on the predicted performance of each algorithm at the time. Algorithm performance is modeled using a machine learning technique based on the available information. The predicted best algorithm is then selected to run for a limited number of evaluations. The proposed approach is tested on several benchmark problems and the results are compared against those obtained using any one of the candidate algorithms alone. 相似文献