首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492592篇
  免费   5614篇
  国内免费   1844篇
化学   266997篇
晶体学   7227篇
力学   20535篇
综合类   9篇
数学   59345篇
物理学   145937篇
  2020年   3445篇
  2019年   3665篇
  2018年   4122篇
  2017年   3965篇
  2016年   7079篇
  2015年   5308篇
  2014年   7572篇
  2013年   22654篇
  2012年   16714篇
  2011年   20855篇
  2010年   13253篇
  2009年   13190篇
  2008年   18846篇
  2007年   19154篇
  2006年   18186篇
  2005年   16714篇
  2004年   14975篇
  2003年   13289篇
  2002年   13013篇
  2001年   14627篇
  2000年   11239篇
  1999年   8983篇
  1998年   7376篇
  1997年   7218篇
  1996年   7059篇
  1995年   6511篇
  1994年   6183篇
  1993年   6059篇
  1992年   6704篇
  1991年   6646篇
  1990年   6236篇
  1989年   6071篇
  1988年   6298篇
  1987年   5970篇
  1986年   5763篇
  1985年   8172篇
  1984年   8369篇
  1983年   6848篇
  1982年   7468篇
  1981年   7364篇
  1980年   7115篇
  1979年   7198篇
  1978年   7439篇
  1977年   7285篇
  1976年   7354篇
  1975年   6944篇
  1974年   6908篇
  1973年   7253篇
  1972年   4375篇
  1971年   3296篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
The phase behavior of binary blends of poly(ether ether ketone) (PEEK), sulfonated PEEK, and sulfamidated PEEK with aromatic polyimides is reported. PEEK was determined to be immiscible with a poly(amide imide) (TORLON 4000T). Blends of sulfonated and sulfamidated PEEK with this poly(amide imide), however, are reported here to be miscible in all proportions. Blends of sulfonated PEEK and a poly(ether imide) (ULTEM 1000) are also reported to be miscible. Spectroscopic investigations of the intermolecular interactions suggest that formation of electron donoracceptor complexes between the sulfonated/sulfamidated phenylene rings of the PEEKs and the n-phenylene units of the polyimides are responsible for this miscibility. © 1993 John Wiley & Sons, Inc.  相似文献   
113.
The interaction between trivalent lanthanide ions and poly(1,4,7,10,13‐pentaoxacyclopentadecan‐2‐yl‐methyl methacrylate), PCR5, in aqueous solution and in the solid state have been studied. In aqueous solution, evidence of a weak interaction between the lanthanides and PCR5 comes from the small red shift of the Ce(III) emission spectra and the slight broadening of the Gd(III) EPR spectra. From the Tb(III) lifetimes in the presence of H2O and D2O the loss of one or two water coordinated molecules is confirmed when Tb(III) is bound to PCR5. An association constant of the order of 200 M?1 was obtained for a 1:1 (lanthanide:15‐crown‐5) complex from the shift of the polymer NMR signals induced by Tb(III). A similar association constant is obtained from the differences of the molar conductivity of Ce(III) solution at various concentrations in presence and absence of PCR5. When Tb(III) is adsorbed on PCR5 membranes, lifetime experiments in H2O and D2O confirm the loss of 5 or 6 water coordinated molecules indicating that in solid state the lanthanide(III)‐PCR5 interaction is stronger than in solution. The adsorption of Ce(III) in PCR5 membranes shows a Langmuir type isotherm, from which an equilibrium constant of 39 M?1 has been calculated. SEM shows that the membrane morphology is not much affected by lanthanide adsorption. Support for lanthanide ion–crown interactions comes from ab initio calculations on 15‐crown‐5/La(III) complex. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1788–1799, 2007  相似文献   
114.
115.
We report on the shape transition from InAs quantum dashes to quantum dots (QDs) on lattice-matched GaInAsP on InP(3 1 1)A substrates. InAs quantum dashes develop during chemical-beam epitaxy of 3.2 monolayers InAs, which transform into round InAs QDs by introducing a growth interruption without arsenic flux after InAs deposition. The shape transition is solely attributed to surface properties, i.e., increase of the surface energy and symmetry under arsenic deficient conditions. The round QD shape is maintained during subsequent GaInAsP overgrowth because the reversed shape transition from dot to dash is kinetically hindered by the decreased ad-atom diffusion under arsenic flux.  相似文献   
116.
We have prepared new polyesters containing quadratic, nonlinear optical (NLO) active chromophores covalently incorporated into the main chain. In these polymers, the sequence of the chromophore units along the main chain is rigorously head to tail. All the polyesters are processable, both in the melt and in solution. For one polyester, a full second‐order NLO characterization has been performed. An out‐of‐resonance d33 coefficient of 21 pm/V at 1368 nm has been measured. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2719–2725, 2007  相似文献   
117.
X.B. Liu  J.G. Li 《Journal of Non》2004,333(1):95-100
The microstructure evolution of decagonal quasicrystals in Al72Ni12Co16 alloy was investigated by the electromagnetic melting and cyclic superheating method. Single-phase decagonal quasicrystals have been obtained when the undercoolings were larger than 60 K. The decagonal quasicrystals formed at various undercoolings show different microstructural morphologies. Furthermore, grain refinement was found near the undercooling of 120 K. Based on current thermodynamic and dendrite growth theories, a dimensionless superheating parameter was adopted to explain the effect of processing conditions on the microstructure of Al72Ni12Co16 alloy. The result indicate that the fine equiaxied microstructure of decagonal quasicrystal (D-phase) formed near on undercooling of 120 K originates from the break-up of dendrites.  相似文献   
118.
In this work, we propose that retardation in vinyl acetate polymerization rate in the presence of toluene is due to degradative chain transfer. The transfer constant to toluene (Ctrs) determined using the Mayo method is equal to 3.8 × 10?3, which is remarkably similar to the value calculated from the rate data, assuming degradative chain transfer (2.7 × 10?3). Simulations, including chain‐length‐dependent termination, were carried out to compare our degradative chain transfer model with experimental results. The conversion–time profiles showed excellent agreement between experiment and simulation. Good agreement was found for the Mn data as a function of conversion. The experimental and simulation data strongly support the postulate that degradative chain transfer is the dominant kinetic mechanism. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3620–3625, 2007  相似文献   
119.
Nanocomposites (NC) were formed using cationic poly(L ‐lysine) (PLL), a semicrystalline polypeptide, that was reinforced by sodium montmorillonite (MMT) clay via solution intercalation technique. By varying solution conditions such as pH, temperature, and polypeptide concentration in the presence of clay platelets, the secondary structure of PLL was controllably altered into α‐helical, β‐sheet, and random coil. The high molecular weight polypeptide shows a strong propensity to fold into the β‐sheet structure when cast as films, irrespective of the initial secondary structure in solution. Nanocomposite local morphology confirms intercalated MMT platelets with PLL over a wide range of compositions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 239–252, 2007.  相似文献   
120.
Differential scanning calorimetry (DSC) does not allow for easy determination of the glass‐transition temperature (Tg) of the polystyrene (PS) block in styrene–butadiene–styrene (SBS) block copolymers. Modulated DSC (MDSC), which deconvolutes the standard DSC signal into reversing and nonreversing signals, was used to determine the (Tg) of both the polybutadiene (PB) and PS blocks in SBS. The Tg of the PB block was sharp, at ?92 °C, but that for the PS blocks was extremely broad, from ?60 to 125 °C with a maximum at 68 °C because of blending with PB. PS blocks were found only to exist in a mixed PS–PB phase. This concurred with the results from dynamic mechanical analysis. Annealing did not allow for a segregation of the PS blocks into a pure phase, but allowed for the segregation of the mixed phase into two mixed phases, one that was PB‐rich and the other that was PS‐rich. It is concluded that three phases coexist in SBS: PB, PB‐rich, and PS‐rich phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 276–279, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号