首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1316篇
  免费   208篇
  国内免费   102篇
化学   894篇
晶体学   14篇
力学   28篇
数学   78篇
物理学   612篇
  2023年   30篇
  2022年   26篇
  2021年   41篇
  2020年   61篇
  2019年   55篇
  2018年   39篇
  2017年   38篇
  2016年   55篇
  2015年   65篇
  2014年   66篇
  2013年   81篇
  2012年   123篇
  2011年   121篇
  2010年   78篇
  2009年   56篇
  2008年   81篇
  2007年   85篇
  2006年   77篇
  2005年   64篇
  2004年   76篇
  2003年   55篇
  2002年   46篇
  2001年   19篇
  2000年   11篇
  1999年   19篇
  1998年   16篇
  1997年   23篇
  1996年   17篇
  1995年   8篇
  1994年   11篇
  1993年   13篇
  1992年   11篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1987年   5篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   5篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1969年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有1626条查询结果,搜索用时 15 毫秒
31.
Non-centrosymmetric pi-conjugated systems incorporating closo-dodecaborate clusters, [NC-C6H4-C(H=N(H)-B12H11]-(2), [NC-C6H4-C(H)=C(H)-C(6)H(4)-C(H)=N(H)-B12H11]-(3), and [NC-C6H4-C(H)=C(H)-C6H4-C(H)=C(H)-C6H4-C(H)=N(H)-B12H11]-(4) have been synthesized by reaction of the monoamino derivative of B12, [B12H11NH3]-(1), with various arylaldehydes, R-C6H4-CHO. These Schiff base-like compounds were fully characterized by multinuclear NMR spectroscopy and mass spectrometry. In order to evaluate these boron rich pi-systems as potential materials for two-photon absorption (TPA) processes, UV linear absorption curves were recorded for 3 and 4, and comparatively studied with those of the boron-free pi-systems NC-C6H4-C(H)=N-CH3(5) and NC-C6H4-C(H)=C(H)-C6H4-C(H)=N-CH3(6). The donor effect of the boron cluster was evidenced by a shift to the lower energy of the absorption band in the spectra of systems incorporating B12. The two photon absorption (TPA) spectrum of compound , obtained by the up-conversion method, shows a resonance at 720 nm with a cross-section sigma(TPA) of 35 x 10(-50) cm(4) s photon(-1) molecule(-1). This value suggests the potential of B12 clusters to be used as new donor groups for the synthesis of non-linear materials.  相似文献   
32.
We study by means of Grand Canonical Monte Carlo simulations the condensation and evaporation of argon at 77 K in nanoporous silica media of different morphology or topology. For each porous material, our results are compared with data obtained for regular cylindrical pores. We show that both the filling and emptying mechanisms are significantly affected by the presence of a constriction. The simulation data for a constricted pore closed at one end reproduces the asymmetrical shape of the hysteresis loop that is observed for many real disordered porous materials. The adsorption process is a quasicontinuous mechanism that corresponds to the filling of the different parts of the porous material, cavity, and constriction. In contrast, the desorption branch for this pore closed at one end is brutal because the evaporation of Ar atoms confined in the largest cavity is triggered by the evaporation of the fluid confined in the constriction (which isolates the cavity from the gas reservoir). This evaporation process conforms to the classical picture of "pore blocking effect" proposed by Everett many years ago. We also simulate Ar adsorption in a disordered porous medium, which mimics a Vycor mesoporous silica glass. The adsorption isotherm for this disordered porous material having both topological and morphological defects presents the same features as that for the constricted pore (quasicontinuous adsorption and steep desorption process). However, the larger degree of disorder of the Vycor surface enhances these main characteristics. Finally, we show that the effect of the disorder, topological and/or morphological, leads to a significant lowering of the capillary condensation pressure compared to that for regular cylindrical nanopores. Also, our results suggest that confined fluids isolated from the bulk reservoir evaporate at a pressure driven by the smallest size of the pore.  相似文献   
33.
After mixing a methylbenzene 4 with “magic blue” solution in F113 (CClF2CCl2F) containing bis{perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl}nitroxide 2 and perfluoro-1-nitroso-1-[1-(2-fluorosulfonyl)ethoxy]ethane 3 at room temperature, benzylic H-atom of 4 could be selectively abstracted by 2, and benzyl radical 5 thus generated was immediately trapped by 3. Based on hyper-fine splitting constants (hfsc), the structure of the spin adducts perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl benzyl nitroxides 6 derived from seven methylbenzenes have been identified. The mechanism of the H-abstraction/spin trapping process is also discussed.  相似文献   
34.
Separate coupled-channel Schr?dinger-equation (CSE) models of the interacting (1)Pi(u) (b,c,o) and (3)Pi(u) (C,C(')) states of N(2) are combined, through the inclusion of spin-orbit interactions, to produce a five-channel CSE model of the N(2) predissociation. Comparison of the model calculations with an experimental database, consisting principally of detailed new measurements of the vibrational and isotopic dependence of the (1)Pi(u) linewidths and lifetimes, provides convincing evidence that the predissociation of the lowest (1)Pi(u) levels in N(2) is primarily an indirect process, involving spin-orbit coupling between the b (1)Pi(u)- and C (3)Pi(u)-state levels, the latter levels themselves heavily predissociated electrostatically by the C(') (3)Pi(u) continuum. The well-known large width of the b(v=3) level in (14)N(2) is caused by an accidental degeneracy with C(v=9). This CSE model provides the first quantitative explanation of the predissociation mechanism for the dipole-accessible (1)Pi(u) states of N(2), and is thus likely to prove useful in the construction of realistic radiative-transfer and photochemical models for nitrogen-rich planetary atmospheres.  相似文献   
35.
Dextran-Fe3O4 hybrid clusters were fabricated by coprecipitating ferric and ferrous ions in the presence of dextran, and after characterization of these clusters combined with calculation based on classical nucleation theory, a structure model of these hybrid clusters was proposed. The hybrid cluster was believed including small Fe3O4 nanoparticles and dextran which acted as both nucleating agent and stabilizer, so that exist in both the inside of magnetite nanoparticles and the periphery of the hybrid clusters. Besides, the effects of WCD (weightiron cation:weightdextran) and molecular weight of dextran on the size, morphology and magnetic property of clusters were also investigated in this paper. It was found that the variation of WCD and molecular weight of dextran have great effect on the size of the hybrid clusters, but have almost no effect on the size of the Fe3O4 nanoparticles. The characterization of magnetic property demonstrated that the Fe3O4 nanoparticles are of a single domain and the saturation magnetization was affected by the size of dextran-Fe3O4 hybrid clusters.  相似文献   
36.
o-Alkenylation of unprotected phenols has been developed by direct C−H functionalization catalyzed by PdII. This work features phenol group as a directing group and realizes highly site-selective C−H bond functionalization of phenols to achieve the corresponding products in moderate to excellent yields at 60 °C. The advantages of this reaction include unprecedented C−H functionalization using phenol as a directing group, high regioselectivity, good substrate scope, mild reaction conditions, and high efficiency. To the best of our knowledge, this is the first example of a regioselective C−H alkenylation of unprotected phenols utilizing phenolic hydroxyl group as a directing group. The alkenylation of unprotected tyrosine and intramolecular cyclization are also successfully carried out under this catalytic system in good yields. Furthermore, this novel method enables a late-stage modification of complex phenol-containing bioactive molecules toward a diversity-oriented drug discovery.  相似文献   
37.
The characteristics of a novel dual-core photonic crystal fiber are investigated. In the center of photonic crystal fiber, an energy transmission channel is introduced. The optimized photonic crystal fiber can be used for polarization splitter, which has a short length and low loss.  相似文献   
38.
The B←N unit has a large dipole and it is isoelectronic to C−C moiety with no dipole. Incorporating B←N units into π-conjugated system is a powerful strategy to design organic small molecules and polymers with intriguing opto-electronic properties and excellent opto-electronic device performance. However, it is unclear how the B←N unit affects electronic structures and opto-electronic properties of large π-conjugated molecules. In this work, to address this question, we developed three dibenzo-azaacene molecules in which two B←N units were introduced at different positions. Although the dibenzo-azaacene skeleton is fully π-conjugated, the effect of B←N unit on the electronic structures of the adjacent rings is much stronger than that of the distant rings. As a result, the three molecules with isomerized B←N incorporation patterns possess different electronic structures and exhibit tunable opto-electronic properties. Among the three molecules, the centrosymmetrical molecule exhibits higher LUMO/HOMO energy levels than those of the two axisymmetrical molecules. When used as the active layer in organic field-effect transistors (OFETs), while the two axisymmetrical molecules show unipolar electron transporting property, the centrosymmetrical molecule exhibits ambipolar hole and electron transporting behavior. This work not only deepens our understanding on organoboron π-conjugated molecules, but also indicates a new strategy to tune opto-electronic properties of organic semiconductors for excellent device performance.  相似文献   
39.
We investigate the influence of particle plasmons on exciton and charge generation and recombination processes in the blend of poly (9‐(1‐octylnonyl)‐9H‐carbazole‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl) (PCDTBT) and [6,6]‐phenyl‐C70butyric acid methyl ester (PC70BM). The particle plasmons are generated from gold nanoparticles, which are embedded into PCDTBT:PC70BM blend. For the blend with gold nanoparticles, we observe enhance light harvesting. Despite the enhanced light collection, we find that the quasi‐steady‐state charge generation has not been influenced by the particle plasmons. However, the generation and recombination of long‐lived (sub‐millisecond) polaron paris have been significantly enhanced: from untrapped state in the pristine blend to the trapped state in the gold nanoparticle‐embedded blend. This result implies that the plasmon‐influenced polarons are trapped at the broadband geminate polaron pair (GPP) state. This state acts as an intermediate state, which either leads to the formation of charge transfer excitons (CTXs) or free charge carriers. In our case, the particle plasmon‐influenced polarons are trapped in the GPP state, which leads to the formation of CTXs. For this reason, we do not observe the enhanced charge generation in PCDTBT:PC70BM blend with particle plasmon resonance. Finally, we revealed that the long‐lived polarons mainly resulted from the localization by particle plasmons. The macroscopic modification in the blend film made negligible contributions to this influence. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 940–947  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号