首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   8篇
化学   259篇
晶体学   3篇
力学   2篇
数学   15篇
物理学   36篇
  2023年   5篇
  2022年   27篇
  2021年   22篇
  2020年   14篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   12篇
  2015年   8篇
  2014年   10篇
  2013年   20篇
  2012年   22篇
  2011年   19篇
  2010年   12篇
  2009年   15篇
  2008年   16篇
  2007年   19篇
  2006年   18篇
  2005年   12篇
  2004年   8篇
  2003年   10篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1990年   3篇
  1986年   1篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1937年   2篇
排序方式: 共有315条查询结果,搜索用时 11 毫秒
31.
Reaction of 21-C-methyl and 21-C-benzyl nickel(II) complexes of inverted meso-tetratolylporphyrin with platinum(II) dichloride or its bis(benzonitrile) complex yields a chloroplatinum(II) species containing two nickel(II) carbaporphyrinoids in a cis arrangement. One of the carbaporphyrinoids coordinates to the platinum ion with the external nitrogen while the other is bound with the external nitrogen and one ortho-carbon of the adjacent meso-aryl ring. The reaction is highly chemoselective. (1)H and (13)C NMR experiments in solution show the diastereoselectivity of the reaction. Single-crystal X-ray data confirm the presence of the diastereomer with opposite configurations of the Ni(II)-coordinated carbons in the subunits of the dimer. Cyclovoltammetric measurements reveal an anodic shift of the nickel(II) oxidation potentials of dimers with respect to those of the parent monomers and two different reduction couples. Reaction of unsubstituted inverted porphyrin with Pt(PhCN)(2)Cl(2) in chlorobenzene yields a monomeric platinum(II) complex of inverted porphyrin. This complex displays a markedly upfield (195)Pt NMR shift compared to tetraphenylporphyrinatoplatinum(II). Under strongly basic conditions deprotonation of the external nitrogen of inverted porphyrin and both electrochemical and chemical oxidation of platinum(II) center are observed.  相似文献   
32.
Base-catalyzed stereospecific anti-Markovnikov addition of dinucleoside (3′,5′)-H-phosphonates to the activated alkenes acrylamide and acrylonitrile resulting in the synthesis of P-chiral diastereomerically pure dinucleoside (3′,5′)-alkylphosphonates is reported.  相似文献   
33.
The crystal structures of two salts, products of the reactions between [(5‐methyl‐2‐pyridyl)aminomethylene]bis(phosphonic acid) and 4‐aminopyridine or ammonia, namely bis(4‐aminopyridinium) hydrogen [(5‐methyl‐2‐pyridinio)aminomethylene]diphosphonate 2.4‐hydrate, 2C5H7N2+·C7H10N2O6P22−·2.4H2O, (I), and triammonium hydrogen [(5‐methyl‐2‐pyridyl)aminomethylene]diphosphonate monohydrate, 3NH4+·C7H9N2O6P23−·H2O, (II), have been determined. In (I), the Z configuration of the ring N—C and amino N—H bonds of the bisphosphonate dianion with respect to the Cring—Namino bond is consistent with that of the parent zwitterion. Removing the H atom from the pyridyl N atom results in the opposite E configuration of the bisphosphonate trianion in (II). Compound (I) exhibits a three‐dimensional hydrogen‐bonded network, in which 4‐aminopyridinium cations and water molecules are joined to ribbons composed of anionic dimers linked by O—H...O and N—H...O hydrogen bonds. The supramolecular motif resulting from a combination of these three interactions is a common phenomenon in crystals of all of the Z‐isomeric zwitterions of 4‐ and 5‐substituted (2‐pyridylaminomethylene)bis(phosphonic acid)s studied to date. In (II), ammonium cations and water molecules are linked to chains of trianions, resulting in the formation of double layers.  相似文献   
34.
The measurements of the interfacial tension at the air/aqueous subphase interface as the function of pH were performed. The interfacial tension of the air–aqueous subphase interface was divided into contributions of individuals. A simple model of the influence of pH on the phosphatidylcholine monolayer at the air/hydrophobic chains of phosphatidylcholine is presented. The contributions of additive phosphatidylcholine forms (both interfacial tension values and molecular area values) depend on pH. The interfacial tension values and the molecular areas values for LH+, LOH forms of phosphatidylcholine were calculated. The assumed model was verified experimentally.  相似文献   
35.
The electronic structure of the lowest excited singlet states and molecular geometries of a series of dialkylaminopyridines (DAAPs) representing electron donor–acceptor systems were studied by photostationary and time-resolved UV–vis spectroscopic methods and quantum chemical calculations. The comparative studies allow us to rationalize dual luminescence of 4-DAAPs in terms of the TICT state model—the analysis of the electronic transition dipole moments indicates a nearly orthogonal conformation of the fluorescent ICT states. Introduction of the amino group at meta position as in 3-diisopropylaminopyridine completely changes photophysics of these pyridine derivatives: (i) the Franck-Condon excited state initially reached upon excitation and the solvent equilibrated fluorescent state are most probably of the same nature (both excited states do not correspond to a full separation of charges) and (ii) the electronic structure and geometry of the fluorescent CT states of m-DIAP are solvent dependent.  相似文献   
36.
Gold nanoparticles have been electrodeposited on an electrode through electrogeneration at an ITO|AuCl4? solution in an ionic liquid|aqueous electrolyte three-phase junction. The electrodeposition was carried out by inverted double-pulse potential chronoamperometry. The direct reduction of AuCl4? ions at the electrode is followed by a counterion transfer through the liquid|liquid interface. Contrary to the electrodeposition from a single ionic liquid phase, scanning electron microscopy reveals that the shape of the resulting nanoparticles is highly angular and well-developed with a diameter of 110 ± 30 nm. Catalytic oxidation of glucose on the modified electrode is demonstrated.  相似文献   
37.
The pseudo‐Michael reaction of 1‐aryl‐2‐aminoimidazolines‐2 with diethyl ethoxymethylenemalonate (DEEM) was investigated. Extensive structural studies were performed to confirm the reaction course. For derivatives with N1 aromatic substituents, it was found that the reaction course was temperature dependent. When the reaction temperature was held at ?10 °C only the formation of 1‐aryl‐7(1H)‐oxo‐2,3‐dihydroimi‐dazo[1,2‐a]pyrimidine‐6‐carboxylates ( 4 ) was observed in contrast to earlier suggestions. Under the room temperature conditions, the same reaction yielded mixtures, with varying ratio, of isomeric 1‐aryl‐7(1H)‐oxo‐ ( 4a‐4f ) and 1‐aryl‐5(1H)‐oxo‐2,3‐dihydroimidazo[1,2‐a]pyrimidine‐6‐carboxylates ( 5a‐5f ). The molecular structure of selected isomers, 4b and 5c , was confirmed by X‐ray crystallography. Frontal chro‐matography with delivery from the edge was applied for the separation of the isomeric esters. The isomer ratio of the reaction products depended on the character of the substituents on the phenyl ring. The 1‐aryl‐7(1H)‐oxo‐carboxylates ( 4a‐4f ) were preferably when the phenyl ring contained H, 4‐CH3, 4‐OCH3 and 3,4‐Cl2 substituents. Chloro substitution at either position 3 or 4 in the phenyl ring favored the formation of isomers 5a‐5f . The isomer ratios were confirmed both by 1H NMR and chromatography. The reaction of the respective hydrobromides of 1‐aryl‐2‐aminoimidazoline‐2 with DEEM, in the presence of triethylamine, gave selectively 5(1H)‐oxo‐esters ( 5a‐5f ).  相似文献   
38.
Organophosphate esters used as flame retardants and plasticizers are ubiquitous contaminants in surface waters. Many studies indicate that these compounds are neurotoxicants, endocrine disruptors, and may affect reproduction and development of aquatic organisms. Thus, analytical methods that allow accurate quantification of these contaminants at environmentally relevant concentrations are desirable for risk assessment studies. In this study, a method based on solid phase extraction and gas chromatography coupled to mass spectrometry was developed for determination of organophosphate esters in river water extracts. Multivariate optimization was used to determine the best conditions for injection of larger volumes of sample in a Programmable Temperature Vaporization inlet. Furthermore, the matrix effect on the instrumental response was evaluated and compensated by association of extraction‐blank‐matched calibration and isotopically labeled focus standards. The method quantification limits ranged from 0.009 to 0.11 µg/L, staying below the predicted non‐effect concentration for the aquatic compartment for all analytes, which is a requisite for using in risk assessment studies. The method was applied to freshwater samples collected in rivers from the Sao Paulo State, Brazil, and eight out of the ten target organophosphate esters were quantified, being tris(2‐chloroisopropyl) phosphate and tris(phenyl) phosphate the most frequently detected compounds.  相似文献   
39.
Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc–tyrosine or Fmoc–phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc‐protected amino acid, namely, 2‐{[(9H‐fluoren‐9‐ylmethoxy)carbonyl](methyl)amino}‐3‐{4‐[(2‐hydroxypropan‐2‐yl)oxy]phenyl}propanoic acid or N‐fluorenylmethoxycarbonyl‐O‐tert‐butyl‐N‐methyltyrosine, Fmoc‐N‐Me‐Tyr(t‐Bu)‐OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single‐crystal X‐ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N‐Fmoc‐phenylalanine [Draper et al. (2015). CrystEngComm, 42 , 8047–8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H…H, C…H/H…C and O…H/H…O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen‐bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C—H…O, C—H…π, (fluorenyl)C—H…Cl(I), C—Br…π(fluorenyl) and C—I…π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long‐Range Synthon Aufbau Modules, further supported by energy‐framework calculations, are discussed. Furthermore, the relevance of Fmoc‐based supramolecular hydrogen‐bonding patterns in biocomplexes are emphasized, for the first time.  相似文献   
40.
Derivatives of pyrimidine‐2(1H)‐selenone are a group of compounds with very strong antimicrobial activity. In order to study the effect of the position of the methoxy substituent on biological activity, molecular geometry and intermolecular interactions in the crystal, three derivatives were prepared and evaluated with respect to their antimicrobial activities, and their crystal structures were determined by X‐ray diffraction. The investigated compounds, namely, 1‐(X‐methoxyphenyl)‐4‐methyl‐6‐phenylpyrimidine‐2(1H)‐selenones (X = 2, 3 and 4 for 1 , 2 and 3 , respectively), C18H16N2OSe, showed very strong activity against selected strains of Gram‐positive bacteria and fungi. Two compounds, 1 and 2 , crystallize in the monoclinic space group P21/c, while 3 crystallizes in the space group P21/n; 1 has two molecules in the asymmetric unit and the other two ( 2 and 3 ) have one molecule. The geometries of the investigated compounds differ slightly in the mutual orientations of the aromatic and pyrimidineselenone rings. The O atom in 1 stabilizes the conformation of the molecules via intramolecular C—H…O hydrogen bonding. The packing of molecules is determined by weak C—H…N and C—H…Se intermolecular interactions and additionally in 1 and 2 by C—H…O intermolecular interactions. The introduction of the methoxy substituent results in greater selectivity of the investigated compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号