全文获取类型
收费全文 | 509篇 |
免费 | 19篇 |
国内免费 | 1篇 |
专业分类
化学 | 421篇 |
晶体学 | 4篇 |
力学 | 10篇 |
数学 | 43篇 |
物理学 | 51篇 |
出版年
2023年 | 5篇 |
2022年 | 36篇 |
2021年 | 31篇 |
2020年 | 17篇 |
2019年 | 15篇 |
2018年 | 14篇 |
2017年 | 15篇 |
2016年 | 22篇 |
2015年 | 16篇 |
2014年 | 25篇 |
2013年 | 29篇 |
2012年 | 32篇 |
2011年 | 37篇 |
2010年 | 20篇 |
2009年 | 27篇 |
2008年 | 36篇 |
2007年 | 17篇 |
2006年 | 15篇 |
2005年 | 31篇 |
2004年 | 22篇 |
2003年 | 14篇 |
2002年 | 7篇 |
2001年 | 6篇 |
2000年 | 1篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1971年 | 1篇 |
1964年 | 1篇 |
1961年 | 1篇 |
1959年 | 1篇 |
排序方式: 共有529条查询结果,搜索用时 15 毫秒
171.
Bogumi Cieniek Ireneusz Stefaniuk Ihor Virt Roman V. Gamernyk Iwona Rogalska 《Molecules (Basel, Switzerland)》2022,27(23)
The material with a high Curie temperature of cobalt-doped zinc oxide embedded with silver-nanoparticle thin films was studied by electron magnetic resonance. The nanoparticles were synthesized by the homogeneous nucleation technique. Thin films were produced with the pulsed laser deposition method. The main aim of this work was to investigate the effect of Ag nanoparticles on the magnetic properties of the films. Simultaneously, the coexisting Ag0 and Ag2+ centers in zinc oxide structures are shown. A discussion of the signal seen in the low field was conducted. To analyze the temperature dependence of the line parameters, the theory described by Becker was used. The implementation of silver nanoparticles causes a significant shift of the line, and the ferromagnetic properties occur in a wide temperature range with an estimated Curie temperature above 500 K. 相似文献
172.
173.
Cancer is a serious problem in modern medicine, mainly due to the insufficient effectiveness of currently available therapies. There is a particular interest in compounds of natural origin, which can be used in the prophylaxis, as well as in the treatment and support of cancer treatment. One such compound is jasmonic acid (3-oxo-2-(pent-2’-enyl)cyclopentane acetic acid; isolated active form: trans-(-)-(3R,7R)- and cis-(+)-(3R,7S)-jasmonic acid) and its derivatives, which, due to their wide range of biological activities, are also proposed as potential therapeutic agents. Therefore, a review of literature data on the biological activity of jasmonates was prepared, with particular emphasis on the mechanisms of jasmonate action in neoplastic diseases. The anti-tumor activity of jasmonate compounds is based on altered cellular ATP levels; induction of re-differentiation through the action of Mitogen Activated Protein Kinases (MAPKs); the induction of the apoptosis by reactive oxygen species. Jasmonates can be used in anti-cancer therapy in combination with other known drugs, such as cisplatin, paclitaxel or doxorubicin, showing a synergistic effect. The structure–activity relationship of novel jasmonate derivatives with anti-tumor, anti-inflammatory and anti-aging effects is also shown. 相似文献
174.
Katarzyna Kasperkiewicz Roman Major Anna Sypien Marcin Kot Marcin Dyner ukasz Major Adam Byrski Magdalena Kopernik Juergen M. Lackner 《Molecules (Basel, Switzerland)》2021,26(11)
The goal of the work was to develop materials dedicated to spine surgery that minimized the potential for infection originating from the transfer of bacteria during long surgeries. The bacteria form biofilms, causing implant loosening, pain and finally, a risk of paralysis for patients. Our strategy focused both on improvement of antibacterial properties against bacteria adhesion and on wear and corrosion resistance of tools for spine surgery. Further, a ~35% decrease in implant and tool dimensions was expected by introducing ultrahigh-strength titanium alloys for less-invasive surgeries. The tested materials, in the form of thin, multi-layered coatings, showed nanocrystalline microstructures. Performed direct-cytotoxicity studies (including lactate dehydrogenase activity measurement) showed that there was a low probability of adverse effects on surrounding SAOS-2 (Homo sapiens bone osteosarcoma) cells. The microbiological studies (e.g., ISO 22196 contact tests) showed that implanting Ag nanoparticles into Ti/TixN coatings inhibited the growth of E. coli and S. aureus cells and reduced their adhesion to the material surface. These findings suggest that Ag-nanoparticles present in implant coatings may potentially minimize infection risk and lower inherent stress. 相似文献
175.
Kamil Piwowarek Edyta Lipiska Elbieta Ha-Szymaczuk Anna Maria Kot Marek Kieliszek Sylwia Bonin 《Molecules (Basel, Switzerland)》2021,26(13)
Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner. 相似文献
176.
Dr. Ottavia Bettucci Dr. Jorge Pascual Dr. Silver-Hamill Turren-Cruz Andrea Cabrera-Espinoza Dr. Wakana Matsuda Dr. Sebastian F. Völker Hans Köbler Dr. Iwona Nierengarten Dr. Gianna Reginato Dr. Silvia Collavini Prof. Shu Seki Prof. Jean-François Nierengarten Prof. Antonio Abate Prof. Juan Luis Delgado 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(31):8110-8117
Multi-branched molecules have recently demonstrated interesting behaviour as charge-transporting materials within the fields of perovskite solar cells (PSCs). For this reason, extended triarylamine dendrons have been grafted onto a pillar[5]arene core to generate dendrimer-like compounds, which have been used as hole-transporting materials (HTMs) for PSCs. The performances of the solar cells containing these novel compounds have been extensively investigated. Interestingly, a positive dendritic effect has been evidenced as the hole transporting properties are improved when going from the first to the second-generation compound. The stability of the devices based on the best performing pillar[5]arene material has been also evaluated in a high-throughput ageing setup for 500 h at high temperature. When compared to reference devices prepared from spiro-OMeTAD, the behaviour is similar. An analysis of the economic advantages arising from the use of the pillar[5]arene-based material revealed however that our pillar[5]arene-based material is cheaper than the reference. 相似文献
177.
Aldona Kostuch Iwona A. Rutkowska Beata Dembinska Anna Wadas Enrico Negro Keti Vezz Vito Di Noto Pawel J. Kulesza 《Molecules (Basel, Switzerland)》2021,26(17)
Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O2-reduction often proceeds at a less positive potential, and produces higher amounts of undesirable H2O2-intermediate. Hybrid supports, which utilize metal oxides (e.g., CeO2, WO3, Ta2O5, Nb2O5, and ZrO2), stabilize Pt and carbon nanostructures and diminish their corrosion while exhibiting high activity toward the four-electron (most efficient) reduction in oxygen. Porosity of carbon supports facilitates dispersion and stability of Pt nanoparticles. Alternatively, the Pt-based bi- and multi-metallic catalysts, including PtM alloys or M-core/Pt-shell nanostructures, where M stands for certain transition metals (e.g., Au, Co, Cu, Ni, and Fe), can be considered. The catalytic efficiency depends on geometric (decrease in Pt–Pt bond distances) and electronic (increase in d-electron vacancy in Pt) factors, in addition to possible metal–support interactions and interfacial structural changes affecting adsorption and activation of O2-molecules. Despite the stabilization of carbons, doping with heteroatoms, such as sulfur, nitrogen, phosphorus, and boron results in the formation of catalytically active centers. Thus, the useful catalysts are likely to be multi-component and multi-functional. 相似文献
178.
Szymon Kosiski Marcin Gonsior Piotr Krzyanowski Iwona Rykowska 《Molecules (Basel, Switzerland)》2021,26(19)
Polyurea is a synthetic high-strength elastomeric material that can be sprayed as a coating over existing structures in order to protect against weathering effects. It is ideal for anti-corrosion protection and is characterized by excellent mechanical properties and adhesion to various surfaces. Further development of this technology may allow obtaining new coatings with improved antistatic properties, which would be an excellent alternative compared to used antistatic epoxy paints. This paper will examine the influence of tetraalkylammonium salt (1), potassium hexafluorophosphate solution (2) and imidazolium-based ionic liquid (3) on the improvement of antistatic properties of the polyurea-polyurethane coatings. In addition, the modified samples were also verified in terms of changes in mechanical properties and the appearance of functional groups other than in the reference sample, as well as surface defects that may arise due to incompatibility of the antistatic additive with the polymer matrix. In order to obtain information about the properties mentioned above, the electrical resistance was determined, the tensile strength and elongation were measured, FT-IR spectra were made, and images were taken with the use of scanning electron microscopy. The conducted research showed that the antistatic properties of the tested hybrid coatings could be improved, but their use may be associated with certain limitations that should be taken into account when designing such materials. 相似文献
179.
Tuya Narangerel Radosaw Bonikowski Konrad Jastrzbek Alina Kunicka-Styczyska Aleksandra Pluciska Krzysztof
migielski Iwona Majak Adrian Bartos Joanna Leszczyska 《Molecules (Basel, Switzerland)》2021,26(24)
Oxytropis pseudoglandulosa is used in Mongolian traditional medicine due to its numerous reported health-promoting effects. To date, there are very few scientific reports that describe this species. In this article, its volatile oil composition, lipid extract composition, total phenolic and flavonoid content, antibacterial and allergenic properties are elucidated for the first time. Hexadecanoic acid, fokienol and tricosane were determined as the most notable components of the volatile oil, at 13.13, 11.46 and 5.55%, respectively. Methyl benzoate was shown to be the most abundant component of lipid extract at 40.69, followed by (E)-prop-2-enoic acid, 3-phenyl- and benzenepropanoic acid, at 18.55 and 9.97%. With a TPC of 6.620 mg GAE g−1 and TFC of 10.316 mg QE g−1, the plant extract of O. pseudoglandulosa indicated good antioxidant activity measured by IC50 at 18.761 µg mL−1. Of the 12 tested microorganisms, B. subtilis and S. cerevisiae were the shown to be most susceptible to the plant extract, with MIC at 2.081 and 0.260% (v/v), respectively. Bet v 1—a major birch pollen allergen found in plant-based foods—was determined to be at 192.02 ng g−1 with ELISA. Such a wide spectrum of biological activity indicated by O. pseudoglandulosa lends credence for its application in food industry. Its exerted antioxidant and antimicrobial effects could improve preservation of low-processed food dedicated for consumers afflicted with allergies. Hexadecanoic acid supplemented in foods with dietary plant extracts could add to the potential anti-inflammatory impact. The analysis of lipid makeup suggests O. pseudoglandulosa extract could also be considered as natural pesticide in organic farming. 相似文献
180.
Aleksandra Tesmar Dariusz Wyrzykowski Katarzyna Kazimierczuk Julia Kłak Szymon Kowalski Iwona Inkielewicz‐Stępniak Joanna Drzeżdżon Dagmara Jacewicz Lech Chmurzyński 《无机化学与普通化学杂志》2017,643(7):501-510
The crystal structure of a nitrilotriacetate (nta) oxidovanadium(IV) salt with 4‐methylpyridinium cation, [4‐Me(Py)H]+, of [4‐Me(Py)H][VO(nta)(H2O)] stoichiometry was determined. The complex comprises a discrete mononuclear [VO(nta)(H2O)]– coordination entity that can be rarely found among other known compounds containing nitrilotriacetate oxidovanadium(IV) moieties. The complex was characterized by spectroscopic (IR and EPR) methods, magnetic measurements, and thermogravimetry (TG‐FTIR). The stability of the title compound in aqueous solutions was investigated by using the potentiometric titration method. Furthermore, spectrophotometric (UV/Vis) studies have revealed that the compound is capable to scavenge the superoxide free radicals (O2 ? –) as well as stable organic radicals i.e. 2,2′‐azinobis(3‐ethylbenzothiazoline‐6 sulfonic acid) cation radical (ABTS+ ? ) and 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH ? ). Finally, biological properties of the complex studied were investigated in relation to its cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the HT22 hippocampal neuronal cell line (the MTT assay). Additionally, the biological action of the compound towards two human osteosarcoma HOS and MG‐63 cell lines (the MTT and BrdU tests) as well as the untransformed human osteoblast hFOB 1.19 cell line was tested. 相似文献