首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   26篇
化学   417篇
晶体学   4篇
力学   6篇
数学   36篇
物理学   39篇
  2023年   5篇
  2022年   20篇
  2021年   24篇
  2020年   15篇
  2019年   14篇
  2018年   10篇
  2017年   15篇
  2016年   25篇
  2015年   13篇
  2014年   24篇
  2013年   29篇
  2012年   30篇
  2011年   34篇
  2010年   17篇
  2009年   25篇
  2008年   35篇
  2007年   16篇
  2006年   21篇
  2005年   31篇
  2004年   24篇
  2003年   15篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1969年   1篇
  1938年   1篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
121.
122.
The aim of this work is to compare the influence of addition of waste aluminosilicate catalyst on the initial periods of hydration of different cements, i.e. calcium aluminate cements of different composition and Portland cement, basing on the calorimetric studies. Cement pastes containing up to 25 mass% of additive were studied, where the water/(cement+additive) ratio was 0.5. An attempt was undertaken to explain the mechanism of action of introduced aluminosilicate in the system of hydrating cement, particularly in the case of calcium aluminate cement pastes. It was found that the presence of fine-grained additive caused in all studied cases the increase of the amount of released heat in the first period after the addition of water. In the case of aluminate cements with aluminosilicate addition, a significant reduction of induction time and faster precipitation of hydration products were observed compared to the reference sample (without additive). In the experimental conditions, the additive caused the acceleration of aluminate cements hydration, and the mechanism of its action is probably complex and can encompass: nucleative action of small grains and formation of new chemical compounds.  相似文献   
123.
Atomic force microscopy (AFM) was combined with surface analytical techniques to investigate the rarely addressed issue of the effect of seawater on the surface properties of a selected fouling-release coating, silicon elastomer RTV11 (trademark of General Electric). The exposure of the RTV11 surface to seawater resulted in a modification of its morphology and mechanical properties, as confirmed by AFM and scanning electron microscopy (SEM). Surface modification was dependent on sample preparation and curing process, namely, curing agent concentration and relative humidity during curing. The RTV11 surface remained largely unaltered for samples cured under 100% relative humidity. SEM and X-ray photoelectron spectroscopy studies confirmed that the modified surface of RTV11 had the same elemental composition as the unexposed surface of the elastomer and showed excess Ca. However, the modified surface deformed plastically under load and was stiffer than the original surface. No major change was found on surfaces exposed to nanopure water during similar times of exposure as in seawater, regardless of curing conditions. The rate of increase in the aggregate formation in seawater can be described by an exponential function, with a decay constant of approximately 4.99 x 10(-)(3) min(-)(1) and a pre-exponential factor of approximately 1.77 x 10(-)(2) microm/min.  相似文献   
124.
Ab initio electronic structure methods, including stabilization method tools for handling electronically metastable states, are used to treat a model system designed to probe the electron-transfer event characterizing electron-transfer dissociation (ETD) mass spectroscopic studies of peptides. The model system consists of a cation H(3)C-(C=O)NH-CH(2)-CH(2)-NH(3)(+), containing a protonated amine site and an amide site, that undergoes collisions with a CH(3)(-) anion. Cross-sections for electron transfer from CH(3)(-) to the protonated amine site are shown to exceed those for transfer to the Coulomb-stabilized amide site by 2 orders of magnitude. Moreover, it is shown that the fates of the amine-attached and amide-attached species are similar in that both eventually lead to the same carbon-centered radical species H(3)C-((*)C-OH)NH-CH(2)-CH(2)-NH(2), although the reaction pathways by which the two species produce this radical are somewhat different. The implications for understanding peptide fragmentation patterns under ETD conditions are also discussed in light of this work's findings.  相似文献   
125.
A photochromic symmetric Schiff base, N,N'-bis(salicylidene)-p-phenylenediamine, is proposed as a probe for the study of solvent dependent enol-keto tautomerism in the ground and excited states. The ground state equilibrium between the enol-keto tautomers is found to depend mainly not on polarity but on the proton donating ability of the solvent. Upon selective excitation of each of these tautomers, the same excited state of a keto tautomer is created: in enol, after the ultrafast excited state intramolecular proton transfer (ESIPT), reaction, and in keto tautomer, directly. Then some part (<30%) of excited molecules are transferred to the photochromic form in its ground state. The evidence of another ultrafast deactivation channel in the excited enol tautomer competing with ESIPT has been found. The solvent does not influence the ESIPT dynamics nor the efficiency of the creation of the photochrome.  相似文献   
126.
The paper presents a new method for a simultaneous determination of inorganic nitrogen species in the oxidized (NO2, NO3) and reduced (NH4+) form in rain water samples. The method is based on a system of nitrogen species separation employing ion exchange and diode-array detection. The ions are separated in a strong ion-exchanger, nitrites and nitrates are determined directly at 208 and 205 nm, respectively, while the ammonium ions are determined in the column hold-up time after a post-column derivatization by the Nessler reagent, at 425 nm. The use of a diode-array detector permits a simultaneous identification of the inorganic nitrogen species in 8 min. The detection limits obtained are: NO2, 0.1 mg L−1; NO3, 0.05 mg L−1; NH4+, 1 mg L−1. The method proposed has been successfully used for speciation analysis of inorganic nitrogen in precipitation.  相似文献   
127.
Fourier transform infrared spectroscopy (FTIR) was used as a novel characterization method to determine the properties of the interface that developed when cobalt oxide nanoparticles were self-assembled in a poly(methyl methacrylate) (PMMA) matrix. The method employed the distinct changes that were observed in the infrared spectra of the polymer upon adsorption onto the cobalt oxide nanoparticles, allowing a quantitative determination of the average number of contact points that the average polymer chain formed with the surface of a cobalt oxide nanoparticle of average size. The results obtained with this method compared favorably to those obtained by the coupling of transmission electron microscopy (TEM) experiments with thermogravimetric analysis (TGA). On the basis of both methods, we concluded that the interfacial region created between the cobalt oxide nanoparticles and PMMA is extremely sensitive to the chain length, i.e., the number of anchor points and the density of the polymer layer increase with chain molecular weight. At molecular weights of approximately 250,000, the density of the polymer layer saturates at a value that correspond to that of very thin PMMA films.  相似文献   
128.
Amphiphilic pillar[5]arene‐containing [2]rotaxanes have been prepared and fully characterized. In the particular case of the [2]rotaxane incorporating a 1,4‐diethoxypillar[5]arene subunit, the structure of the compound was confirmed by X‐ray crystal structure analysis. Owing to a good hydrophilic/hydrophobic balance, stable Langmuir films have been obtained for these rotaxanes and the size of the peripheral alkyl chains on the pillar[5]arene subunit has a dramatic influence on the reversibility during compression–decompression cycles. Indeed, when these are small enough, molecular reorganization of the rotaxane by gliding motions are capable of preventing strong π–π interactions between neighboring macrocycles in the thin film.  相似文献   
129.
Alkylzinc alkoxides, [RZnOR′]4, have received much attention as efficient precursors of ZnO nanocrystals (NCs), and their “Zn4O4” heterocubane core has been regarded as a “preorganized ZnO”. A comprehensive investigation of the synthesis and characterization of a new family of tert‐butyl(tert‐butoxy)zinc hydroxides, [(tBu)4Zn43‐OtBu)x3‐OH)4?x], as model single‐source precursors of ZnO NCs is reported. The direct reaction between well‐defined [tBuZnOH]6 ( 16 ) and [tBuZnOtBu]4 ( 24 ) in various molar ratios allows the isolation of new mixed cubane aggregates as crystalline solids in a high yield: [(tBu)4Zn43‐OtBu)33‐OH)] ( 3 ), [(tBu)4Zn43‐OtBu)23‐OH)2] ( 4 ), [(tBu)4Zn43‐OtBu)(μ3‐OH)3] ( 5 ). The resulting products were characterized in solution by 1H NMR and IR spectroscopy, and in the solid state by single‐crystal X‐ray diffraction. The thermal transformations of 2 – 5 were monitored by in situ variable‐temperature powder X‐ray diffraction and thermogravimetric measurements. The investigation showed that the Zn?OH groups appeared to be a desirable feature for the solid‐state synthesis of ZnO NCs that significantly decreased the decomposition temperature of crystalline precursors 3 – 5 .  相似文献   
130.
The nitroaldol reaction of (1R)-8-phenylmenthyl glyoxylate (3b) with 1-nitro-1-phenylmethane (4) or with 1-nitro-2-phenylethane (13) led stereoselectively to adducts syn-2b and syn-12b, which were then transformed into the Taxotere side chain and (-)-bestatin hydrochloride in overall yields of 52% and 31%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号