首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
化学   34篇
物理学   9篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1987年   2篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
31.
The gas-phase stabilities of cluster ions SF+m (SF6)n with m = 0−5 were determined by using a high pressure mass spectrometer. The bond energies of SF+m (SF6)1 were found to be less than 10 kcal/mol and to decrease with m = 0 → 5. There appear to be rather large gaps in the bond energies between n = 1 and 2 for the clusters SF+m (SF6)n with m = 0−4. The structures of SF+5, SF+ (SF6)1, SF+3 (SF6)1, and SF+5 (SF6)1 were investigated by ab initio molecular orbital calculations. For SF+5, the D3h geometry is found to be most stable andC4v is a transition state of the Berry pseudorotation. For the ion-molecule complexes, the “on-top hat” models were found to be the most stable structures.  相似文献   
32.
Thermodynamic data, ΔH n-1, n o and ΔS n-1, n o, for clustering reactions of halide ions X?(X = F, Cl, Br, and I) with N2Owere measured with a pulsed electron beam high-pressure mass spectrometer. In contrast to the fact that CO2 forms a covalent bond with the fluoride ion to yield the fluoroformate ion, FCO2 ?, the interaction between F? and N2O is mainly electrostatic. It was found that the cluster ions F? (N2O)n complete the first shell at n = 6, thus forming an octahedral structure. The difference between F—CO2 ? and F? ... N2O is discussed in terms of Coulombic, exchange, and charge-transfer interactions. The X? (N2O)2 clusters (X = Cl, Br and I) are found to be of C2h symmetry, while F? (N2O)2 is of a twisted form and is slightly asymmetric due to a slight participation of covalency (charge transfer) in the core ion F? ... N2O.  相似文献   
33.
We have used resonant soft x-ray scattering to study the effects of discommensuration on the hole Wigner crystal (HC) in the spin ladder Sr(14-x)CaxCu24O41 (SCCO). As the hole density is varied the HC forms only with the commensurate wave vectors L(L) = 1/5 and L(L) = 1/3; for incommensurate values it "melts." A simple scaling between L(L) and temperature is observed, tau1/3/tau1/5 = 5/3, indicating an inverse relationship between the interaction strength and wavelength. Our results suggest that SCCO contains hole pairs that are crystallized through an interplay between lattice commensuration and Coulomb repulsion, reminiscent of the "pair density wave" scenario.  相似文献   
34.
Formation constants (K ML) of 1:1 complexes of 15-(2,5-dioxahexyl)-15-methyl-16-crown-5 (L16C5) and 15,15-dimethyl-16-crown-5 (DM16C5) with alkali metal ions were determined in acetonitrile (AN) and propylene carbonate (PC) by conductometry at 25°C. Except for the case of Li+-and K+-16C5 complexes in PC, the selectivity sequences of L16C5 and DM16C5 are identical with those of the parent crown ether 16-crown-5 (16C5) regardless of the solvent (AN, PC, methanol) (Na1 > Li+ > K+ > Rb+ > Cs+), which show the size-fit correlation. The selectivities of L16C5 and DM16C5 for the alkali metal ions are governed not by the sidearms but by the cavity size. The stability of the crown ether complex is dependent not on the dielectric constant but largely on the donor number of the solvent. TheK ML(M1 +)/K ML(M2 +) ratio of L16C5 or 16C5 varies very much with the solvent in the cases of M1=Na, M2=K and M1=Na, M2=Li, but that of DM16C5 is almost constant regardless of the solvent.  相似文献   
35.
Recent developments in a charge-stripping system employing high-flow rate He gas circulation (~200 L/min) for 238U35+ beams injected at 10.8 MeV/u are reported. He gas is confined in a target section and is separated from a vacuum duct using five-stage differentially-pumped sections. To minimize the gas leakage rate via beam apertures, a high-performance differential pumping was required. To avoid huge gas consumption, a clean gas recycling with high-flow rate was simultaneously required. To realize these, we developed multi-stage mechanical booster pump array. The recycling rate of He gas was achieved as more than 99 %. The system performance has been checked with the present maximum beam current up to 13 eμA (~1 kW beam power).  相似文献   
36.
The microwave spectra of cyclopentanone oxime (C5H8NOH) and its deuterated species (C5H8NOD) were observed in the frequency region from 9 to 40 GHz. Only a-type R-branch transitions were assigned in the vibrational ground and excited states. The rotational constants of normal species were determined to be A = 5870.80(33), B = 1917.021(8), and C = 1526.784(8) MHz in the vibrational ground state, and A = 5870.16(43), B = 1842.707(9), and C = 1479.401(9) MHz for deuterated species. The dipole moments were determined as μa = 0.80(10), μb = 0.20(10), and μc = 0.40(10) D. The ring-puckering vibrational states were observed up to v = 6. The vibrational mode was nearly harmonic. The fundamental frequency of the ring-puckering mode was found to be 70(20) cm−1. The molecular structure of cyclopentanone oxime was determined to be a twisted configuration by comparing the observed and calculated rotational constants, planar moment of inertia, Pcc, and rs coordinates of the hydroxyl hydrogen atom. On the molecular geometry, the bond angle, C2C1N6 (Fig. 1), is larger than C5C1N6 by ca. 6°, because of the steric repulsion between the methylene group of C2 atom and hydroxyl group.  相似文献   
37.
Studies have shown that exposure to nano-sized particles (< 50 nm) result in their translocation to the central nervous system through the olfactory nerve. Translocation commonly occurs via inhalation, ingestion and skin uptake. Little information is available on the specific pathway of cellular localization of nano-sized particles in the olfactory bulb. The nano-sized particles entrance into the postsynaptics cell is of particular interest because the mitral cell projects to the central nucleus of the amygdala and the piriform cortex. Therefore, our objective in this follow-up study has been to determine whether or not the mitral cells project nano-sized particles to the brain.Nano-sized particles in this study were generated using diesel exhaust. Lab mice were exposed for a period of 4 weeks. We employed synchrotron radiation (SPring-8, Japan) to determine the concentration levels of metal in the olfactory neuron pathway. Metal levels were assayed by mapping, using X-ray fluorescence analysis. The major metal components measured in the filter that collected the inhaled diesel exhaust particles were calcium, copper, iron, nickel and zinc. Our studies reveal an increase in the amount of nano-sized particles in the glomerular layer as well as in the neurons in the olfactory epithelium. Higher levels of nickel and iron were found in the olfactory epithelium's lamina propria mucosae in comparison to that in the control group. Higher levels of iron also were observed in the glomerular layer. Our studies do not clarify the specifics of metal adhesion and detachment. This remains to be one of the key issues requiring further clarification.  相似文献   
38.
A preliminary study on the atmospheric-pressure Penning ionization (APP(e)I) of gaseous organic compounds with Ar* has been made. The metastable argon atoms (Ar*: 11.55 eV for (3)P(2) and 11.72 eV for (3)P(0)) were generated by the negative-mode corona discharge of atmospheric-pressure argon gas. By applying a high positive voltage (+500 to +1000 V) to the stainless steel capillary for the sample introduction (0.1 mm i.d., 0.3 mm o.d.), strong ion signals could be obtained. The ions formed were sampled through an orifice into the vacuum and mass-analyzed by an orthogonal time-of-flight mass spectrometer. The major ions formed by APP(e)I are found to be molecular-related ions for alkanes, aromatics, and oxygen-containing compounds. Because only the molecules with ionization energies less than the internal energy of Ar* are ionized, the present method will be a selective and highly sensitive interface for gas chromatography/mass spectrometry.  相似文献   
39.
In laser spray, the tip of an electrospray capillary is irradiated with a continuous CO(2) laser beam. Here, we report results from a modified laser spray method that employs a relatively low laser irradiance level. With a laser power of approximately 2 W and a focal spot size ( approximately 0.3 mm), which covered the entire front surface of the electrospray capillary, the irradiance was approximately 3 x 10(3) W/cm(2). This resulted in a quiescent and smooth vaporization of aqueous solutions. This "evaporation-mode" laser spray method yielded the best results so far obtained in our laboratory with laser-irradiated electrospray, producing higher and more stable signals. The method was applied to the analysis of aqueous solutions of lysozyme and myoglobin. Mass spectra were obtained as a function of laser power from 0 W (electrospray) to approximately 2 W. The spray generated at the tip of the stainless steel capillary was observed with a CCD camera. With increase of laser power, the droplets in the spray became finer and the Taylor cone became progressively smaller. The strongest ion signals were recorded when the sample solution protruded only slightly from the tip of the capillary. A broadening of the lysozyme charge-state distribution, attributable to protein unfolding, was observed with a laser power of 2 W. No denaturation of myoglobin took place up to a laser power of 1.6 W. However, a sudden onset of denaturation was observed at 1.8 W as a broadening of the myoglobin charge distribution and the appearance of apo-myoglobin peaks. These findings demonstrate that laser spray is capable of dissociating the noncovalent complexes selectively without breaking covalent bonds.  相似文献   
40.
Crown conformers of O-carboxymethylated calix[4]resorcinarenes (CRA-CMs) bearing four perfluorooctyl- and octylazobenzene residues at the lower rim of the cyclic skeleton were synthesized to investigate the resistance to desorption of CRA-CMs forming self-assembled monolayers on aminosilylated silica substrates and the surface energy photocontrol based on E- to-Z photoisomerization of the azobenzene moiety. In comparison with CRA-CM monolayers on silica substrates, the desorption of CRA-CMs on the aminated substrate was remarkably suppressed even when CRA-CM monolayers were sonicated in polar solvents and even in water. The high desorption-resistance was attributable to multi-point adsorption of CRA-CMs through COOH/NH2 interactions. UV-Vis spectral studies revealed that CRA-CM substituted with p-octylazobenzene exhibited high E- to-Z photoisomerizability up to 92% in self-assembled monolayers, while less photoisomerizability was observed for CRA-CM bearing p-perfluorooctylazobenzenes due to the steric hindrance of the larger perfluoroalkyl chains. Photoinduced changes of contact angles for water up to 8.3° were observed for a CRA-CM monolayer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号