首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   4篇
化学   51篇
力学   6篇
数学   33篇
物理学   31篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   1篇
  2013年   4篇
  2012年   11篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   4篇
  1893年   2篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
111.
We analyze a class of polygonal billiards, whose behavior is conjectured to exhibit a variety of interesting dynamical features. Correlation functions are numerically investigated, and in a subclass of billiard tables they give indications about a singular continuous spectral measure. By lifting billiard dynamics we are also able to study transport properties: the (normal or anomalous) diffusive behavior is theoretically connected to a scaling index of the spectral measure; the proposed identity is shown to agree with numerical simulations. (c) 2000 American Institute of Physics.  相似文献   
112.
Mono and bicomponent TiO2 and WO3 nanoparticles were synthesized inside Vycor® glass pores, by cycles of impregnation of the glass with the respective oxide precursor followed by its thermal decomposition. The impregnation-decomposition cycle (IDC) methodology promoted a linear mass increase of the glass matrix, and allowed tuning the nanoparticle size. X-ray diffraction and Raman spectroscopy data allowed identifying the formation of TiO2 as anatase phase, while WO3 is a mixture of the γ-WO3 (monoclinic) and δ-WO3 (triclinic) phases. High resolution transmission electron microscopy images revealed that for 3, 5, and 7 IDC, the TiO2 nanoparticles obtained presented average diameters of 3.4, 4.3, and 5.1 nm, and the WO3 nanoparticles have 2.9, 4.6, and 5.7 nm sizes. These TiO2 and WO3 monocomponent nanoparticles were submitted to IDC with the other oxide precursor, resulting in bicomponent nanoparticles. The broadening and shift of the Raman bands related to titanium and tungsten oxides suggest the formation of hetero-structure core–shell nanoparticles with tunable core sizes and shell thicknesses.  相似文献   
113.
Using a dynamical model relevant to cold-atom experiments, we show that long-lasting exponential spreading of wave packets in momentum space is possible. Numerical results are explained via a pseudoclassical map, both qualitatively and quantitatively. Possible applications of our findings are also briefly discussed.  相似文献   
114.
Room-temperature red cathodoluminescence (CL) emission (R band) arising from the paramagnetic point-defect population present in amorphous silicon oxide (SiOx) has been characterized with respect to its shift upon applied stress, according to a piezo-spectroscopic (PS) approach. The R band (found at around 630 nm) originates from nonbridging oxygen hole centers (NBOHC; Si-O*) generated in the presence of oxygen-excess sites. It is shown that reliable stress assessments can be obtained in silica glass with a relatively high spatial resolution, provided that appropriate spectroscopic procedures are developed to precisely extract from the CL spectrum the shift upon stress of the R band, isolated from other partly overlapping bands. Macroscopic and microscopic PS calibration procedures are shown to lead to consistent results on silica materials with different chemical characteristics and, thus, with different intrinsic defect populations. In addition, quantitative calibrations of both electron probe size and luminescence emission distribution within the electron probe are given. As an application of the PS technique, the magnitude of the residual stress piled up (mainly due to a thermal expansion mismatch) at a sharp silica/silicon interface has been characterized by taking into account the gradient in defect population developed as a function of distance from the interface. In the Results and Discussion section, brief comments are offered regarding the possible impact of highly spatially resolved stress assessments in silica glass upon the development of new materials and advanced electronic devices.  相似文献   
115.
A theoretical Raman polarization analysis is proposed for the corundum structure of sapphire (α‐Al2O3) and validation experiments conducted with the purpose of retrieving the full set of phonon deformation potentials (PDPs). From the theoretical side, the change in force constants under stress/strain has been expressed in matrix form, and close‐form solutions were obtained for the eigenvalues that take into account the local dependence of oblique phonons on crystallographic orientation (i.e. uncoupling the effects of local crystal orientation and stress tensor from the shifts of Raman bands). From the experimental side, controlled (uniaxial) stress fields were applied to sapphire parallelepiped bars (along known crystallographic axes) while Raman spectra were systematically recorded along the bar thickness. An untextured alumina polycrystal with fine grain size was also investigated according to the same procedure. As a result of this set of experiments, PDPs for both A1g and Eg vibrational bands could be retrieved. Validation of PDP constants was obtained by measuring the steeply graded stress fields developed ahead of a surface crack propagated along an arbitrary crystallographic direction in the R‐plane of the sapphire crystal. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
116.
The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR–WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR–WS presented the best performance.  相似文献   
117.
(Trifluoromethyl)stannane reagents such as Bu3SnCF3 are effective in CuI‐mediated trifluoromethylation reactions of aryl iodides. The reactions proceed via the intermediacy of [CuCF3] species.  相似文献   
118.
We consider a quantum system constituted by N identical particles interacting by means of a mean-field Hamiltonian. It is well known that, in the limit N → ∞, the one-particle state obeys to the Hartree equation. Moreover, propagation of chaos holds. In this paper, we take care of the dependence by considering the semiclassical expansion of the N-particle system. We prove that each term of the expansion agrees, in the limit N → ∞, with the corresponding one associated with the Hartree equation. We work in the classical phase space by using the Wigner formalism, which seems to be the most appropriate for the present problem. Submitted: October 2, 2008., Accepted: December 4, 2008.  相似文献   
119.
In the food industry, it is frequently necessary to check the quality of an ingredient to decide whether to use it in production and/or to have an idea of the final possible contamination of the finished product. The current need to quickly separate and identify relevant contaminants within different classes, often with legal residue limits on the order of 1-100?μg?kg(-1) , has led to the need for more effective analytical methods. With thousands of organic compounds present in complex food matrices, the development of new analytical solutions leaned towards simplified extraction/clean-up procedures and chromatography coupled with mass spectrometry. Efforts must also be made regarding the instrumental phase to overcome sensitivity/selectivity limits and interferences. For this purpose, high-resolution full scan analysis in mass spectrometry is an interesting alternative to the traditional tandem mass approach. A fast method for extracting and purifying bakery matrices was therefore developed and combined with the exploitation of ultra-high-pressure liquid chromatography (UHPLC) coupled to a Orbitrap Exactive? high-resolution mass spectrometer (HRMS). Extracts of blank, naturally contaminated and fortified minicakes, prepared through a combined use of industrial and pilot plant production lines, were analyzed at different concentration levels (1-100?μg?kg(-1) ) of various contaminants: a limit of detection at 10?μg?kg(-1) was possible for most of the analytes within all the categories analyzed, including pesticides, aflatoxins, trichothecene toxins and veterinary drugs. The application of accurate mass targeted screening described in this article demonstrates that current single-stage HRMS analytical instrumentation is well equipped to meet the challenges posed by chemical contaminants in the screening of both bakery raw materials and finished products. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   
120.
A quantitative polarized Raman analysis of ferroelectric grain/domain orientation in LiSbO3 (LS‐modified) (K0.5Na0.5)NbO3 (KNN) ceramics is presented, based on the analysis of the complex orientation dependence in space of their Raman‐active modes. Complete sets of Raman tensor elements of Ag, and Eg phonon modes for orthorhombic/tetragonal structures of KNN have been determined. Through this spectroscopic algorithm, quantitative information could be extracted in terms of three Euler angles in space for KNN samples consisting of mixed phases, thus enabling quantitative visualization of the local distribution of grains/domains in the solid angle. As an application of the method, we quantitatively examined the unknown crystallographic grain orientation patterns on the surfaces of pure KNN and of KNN‐0.05LS ceramics. These two samples were useful to clarify a polymorphic phase transition from the orthorhombic to the tetragonal phase taking place in the LS‐modified KNN system. Thus, we demonstrated that polarized Raman spectroscopy is a valuable and efficient tool for nondestructive three‐dimensional assessments of grain/domain orientation in ferroelectric materials with complex polymorphic structures. We believe that the data shown here represent a typical scenario encountered in grain/domain orientation assessments of piezoelectric perovskites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号