首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1793篇
  免费   58篇
  国内免费   13篇
化学   1556篇
晶体学   7篇
力学   22篇
数学   197篇
物理学   82篇
  2023年   10篇
  2022年   49篇
  2021年   45篇
  2020年   29篇
  2019年   28篇
  2018年   16篇
  2017年   22篇
  2016年   49篇
  2015年   56篇
  2014年   55篇
  2013年   83篇
  2012年   150篇
  2011年   139篇
  2010年   103篇
  2009年   93篇
  2008年   117篇
  2007年   125篇
  2006年   119篇
  2005年   115篇
  2004年   102篇
  2003年   79篇
  2002年   66篇
  2001年   23篇
  2000年   30篇
  1999年   21篇
  1998年   15篇
  1997年   16篇
  1996年   11篇
  1995年   19篇
  1994年   8篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   8篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1963年   1篇
  1939年   1篇
  1936年   1篇
排序方式: 共有1864条查询结果,搜索用时 31 毫秒
51.
The ground state (S(0)) and lowest-energy triplet state (T(1)) potential energy surfaces (PESs) concerning the thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one (8) to the ketonic tautomer of phenol (11) have been extensively explored using ab initio CASSCF and CASPT2 calculations with several basis sets. State T(1) is predicted to be a triplet pipi lying 66.5 kcal/mol above the energy of the S(0) state. On the S(0) PES, the rearrangement of 8 to 11 is predicted to occur via a two-step mechanism where the internal cyclopropane C-C bond is broken first through a high energy transition structure (TS1-S(0)()), leading to a singlet intermediate (10-S(0)()) lying 25.0 kcal/mol above the ground state of 8. Subsequently, this intermediate undergoes a 1,2-hydrogen shift to yield 11 by surmounting an energy barrier of only 2.7 kcal/mol at 0 K. The rate-determining step of the global rearrangement is the opening of the three-membered ring in 8, which involves an energy barrier of 41.2 kcal/mol at 0 K. This high energy barrier is consistent with the fact that the thermal rearrangement of umbellulone to thymol is carried out by heating at 280 degrees C. Regarding the photochemical rearangement, our results suggest that the most efficient route from the T(1) state of 8 to ground state 11 is the essentially barrierless cleavage of the internal cyclopropane C-C bond followed by radiationless decay to the S(0) state PES via intersystem crossing (ISC) at a crossing point (S(0)()/T(1)()-1) located at almost the same geometry as TS1-S(0)(), leading to the formation of 10-S(0)() and the subsequent low-barrier 1,2-hydrogen shift. The computed small spin-orbit coupling between the T(1) and S(0) PESs at S(0)()/T(1)()-1 (1.2 cm(-)(1)) suggests that the ISC between these PESs is the rate-determining step of the photochemical rearrangement 8 --> 11. Finally, computational evidence indicates that singlet intermediate 10-S(0)() should not be drawn as a zwitterion, but rather as a diradical having a polarized C=O bond.  相似文献   
52.
(±)-O-methylperezone (1b) was obtained by selective oxidative demethylation of (±)-leucoperezone trimethyl ether (4a). Compound (4a) was prepared by condensation of 2,3,5-trimethoxytoluene (5e) with 6-methyl-5-hepten-2-one, followed by reductive removal of the tertiary alcohol. The aromatic precursor 5e was prepared in four steps from 2,3-dimethoxytoluene (5a) and, alternatively, in three steps from 5-bromoveratraldehyde (6a). Racemic 1b and 4a were directly compared with the optically active molecules prepared from natural R(-)-perezone (1a).  相似文献   
53.
Summary The reduction of nickel(II) halides with NaBH4 in the presence of different ligands, L=PPh3, AsPh3, SbPh3, has been studied. With a molar ratio L/Ni=3, new complexes NiX(SbPh3)3, X=Cl, Br, I, were obtained. With a molar ratio L/Ni=2, dimeric species [NiXL2]2, X=Cl, Br, I; L=PPh3, AsPh3, SbPh3, were isolated. They are unstable and decompose easily in the solid and rapidly in solution, so that pure samples were only identified for X=Cl, L=PPh3, AsPh3, SbPh3; X=Br, L=PPh3 and X=I, L=PPh3. With a molar ratio L/Ni=1, complexes [NiXL]n (probably polymeric) were obtained. They are very unstable and pure samples could only be isolated when X=Cl, L=PPh3. Impure substances containing variable amounts of decomposition products were obtained in all the remaining cases. The chemical and structural behaviour of these complexes is discussed.  相似文献   
54.
Half-sandwich complexes of formula [(ηn-ring)MClL]PF6 [L = (S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-isopropyloxazoline; (ηn-ring)M = (η5-C5Me5)Rh; (η5-C5Me5)Ir; (η6-p-MeC6H4iPr)Ru; (η6-p-MeC6H4iPr)Os] have been prepared and spectroscopically characterised. The molecular structures of the rhodium and iridium compounds have been determined by X-ray crystallography. The related solvate complexes [(η5-C5Me5)ML(Me2CO)]2+ (M = Rh, Ir) are active catalysts for the Diels-Alder reaction between methacrolein and cyclopentadiene.  相似文献   
55.
This work describes the preparation of polypyrrole and EPDM rubber blends, PPy/EPDM, by the sorption of pyrrole (vapor phase) in an EPDM matrix containing CuCl2. We investigated the effect of the oxidant particle-size on the sorption and polymerization equilibrium, electrical conductivity, and mechanical properties of the blends. Independently of the CuCl2 concentration and polymerization time, the polypyrrole weight fraction in the blend, Xppy, increases when the oxidant particle-size in changed from 150–250 μm to smaller than 106 μm. For blends containing 50 phr of CuCl2, obtained following 72 h of exposure to pyrrole, an increase in the Young's Modulus (from 2.2 ± 0.2 to 3.9 ± 0.6 MPa) and an increase in the electrical conductivity (from 10?9 to 10?7 S cm?1) was observed when the oxidant particle-size was decreased. Infrared spectroscopy, thermogravimetric analysis, scanning differential calorimetry, and scanning electron microscopy were used in sample characterization. © 1994 John Wiley & Sons, Inc.  相似文献   
56.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   
57.
A 1:1 inclusion compound between octakis(2,3,6-tri-O-methyl)-γ-cyclodextrin (TRIMEG) and the chelate complex Eu(NTA)3·2H2O (NTA=1-(2-naphthoyl)-3,3,3-trifluoroacetonate) was prepared and characterized by powder X-ray diffraction, thermogravimetric analysis and photoluminescence spectroscopy. The results were compared with those obtained for the corresponding native γ-CD adduct. Excitation and emission spectra were measured, and the lifetimes were determined for the Eu3+ first excited state (5D0). The results indicate the presence of only one low-symmetry environment for the Eu3+ cations in the inclusion compounds. Encapsulation of the Europium complex in the two CDs increases the quantum efficiency of the ligand-to-metal energy transfer pathway, but the efficiency of the Eu3+ sensitization was significantly higher with TRIMEG as the host molecule. This may be related with the observation that the two hosts appear to have different influences on the Eu3+ coordination environments for the guest molecule.  相似文献   
58.
A capillary zone electrophoresis (CZE) method using a fused-silica capillary (60.2 cm x 75 microm ID) was investigated for the determination of triamterene (TRI), methotrexate (MTX), and creatinine (CREA) in human urine. The separation was performed using a hydrodynamic injection time of 7 s (0.5 psi), a voltage of 25 kV, a capillary temperature of 30 degrees C, and 40 mM phosphoric acid adjusted to pH 2.25 by addition of triethanolamine as separation electrolyte. Under these conditions, analysis takes about 15 min. A linear response over the 0.5-15.0 mg L(-1) concentration range was found for TRI and MTX, and 0.5-80.0 mg L(-1) for CREA. Dilution of the sample (water:urine, 1:1 for TRI and MTX, and 1:25 for CREA determination) was the only step necessary prior to analysis by electrophoresis. The developed method is easy, rapid, and sensitive and has been applied to determine triamterene,methotrexate, and creatinine in urine samples with satisfactory results.  相似文献   
59.
Neutral oxorhenium(V) complexes with thiosemicarbazones derived from 2‐pyridine formamide, HL1, are formed when [ReOCl3(PPh3)2] reacts with equimolar amounts of the ligands. Reduction of the metal and the formation of rhenium(III) complexes of the composition [Re(L1)2]+ occurs when an excess of thiosemicarbazones is used and the reaction is performed in boiling toluene for a prolonged period of time. The thiosemicarbazones deprotonate and act as tridentate ligands as has been confirmed by an X‐ray structure of [ReOCl2(L1b)], where HL1b is 2‐pyridineformamide‐N(4)‐ethylthiosemicarbazone and the ligand occupies the equatorial coordination sphere of the complex together with one of the chloro ligands.  相似文献   
60.
Zeolites are viewed by some as the “philosopher's stone” of modern chemistry.[1] They are more or less indispensable in oil refining and petrochemicals manufacture where they are widely applied as solid acid catalysts. More recently attention has been focused on their use in the manufacture of fine chemicals. The synthetic utility of zeolites and related molecular sieves (zeotypes) has been considerably extended by the incorporation of redox metals into their frameworks. The resulting redox molecular sieves catalyze a variety of selective oxidations under mild conditions in the liquid phase. Their structural diversity–including variation of the redox metal, incorporation of metal complexes, and the size and polarity of the micropores–provides the possibility of designing tailor-made solid catalysts (“mineral enzymes”) for liquid-phase oxidations with clean oxidants such as O2, H2O2, and RO2H. Hence, they have enormous potential in industrial organic synthesis as environmentally friendly alternatives to traditional oxidations employing inorganic oxidants in stoichiometric amounts. A primary aim of this review is to familiarize organic chemists with the synthetic potential of redox molecular sieves. An outline of their synthesis, structures, and chemical properties, highlighting their unique advantages, is followed by a discussion of general (mechanistic) features that influence the choice of a suitable catalyst for a particular type of oxidation. The main part of the review deals with the oxidation of various substrates of synthetic interest–such as alkanes, alkenes, (alkyl)arenes, alcohols, and amines–and emphasizes the advantages of redox molecular sieves (including selectivity and stability) over their homogeneous counterparts. New directions towards truly biomimetic solid catalysts, for example zeolite-encapsulated chiral metal complexes as heterogeneous catalysts for asymmetric oxidations, are high-lighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号