首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5453篇
  免费   216篇
  国内免费   28篇
化学   4027篇
晶体学   59篇
力学   163篇
综合类   7篇
数学   581篇
物理学   860篇
  2023年   35篇
  2022年   115篇
  2021年   120篇
  2020年   103篇
  2019年   91篇
  2018年   80篇
  2017年   81篇
  2016年   173篇
  2015年   158篇
  2014年   203篇
  2013年   298篇
  2012年   458篇
  2011年   432篇
  2010年   293篇
  2009年   256篇
  2008年   358篇
  2007年   354篇
  2006年   322篇
  2005年   269篇
  2004年   252篇
  2003年   203篇
  2002年   192篇
  2001年   88篇
  2000年   90篇
  1999年   58篇
  1998年   37篇
  1997年   34篇
  1996年   36篇
  1995年   37篇
  1994年   29篇
  1993年   34篇
  1992年   31篇
  1991年   26篇
  1990年   29篇
  1989年   24篇
  1988年   20篇
  1987年   26篇
  1986年   19篇
  1985年   18篇
  1984年   15篇
  1983年   12篇
  1982年   14篇
  1980年   21篇
  1979年   18篇
  1978年   26篇
  1977年   16篇
  1976年   17篇
  1975年   13篇
  1974年   12篇
  1973年   11篇
排序方式: 共有5697条查询结果,搜索用时 11 毫秒
111.
Rapid, sensitive and specific high-performance liquid chromatographic assays are described for protoporphyrinogen oxidase and ferrochelatase in human leucocytes. The enzyme reaction products were separated and quantitated by reversed-phase high-performance liquid chromatography with fluorescence detection. The optimal pH for the protoporphyrinogen oxidase assay was 8.6 and the Michaelis constant for protoporphyrinogen IX was 9.78 +/- 0.96 microM (mean +/- S.D.). The mean (+/- S.D.) activity of protoporphyrinogen oxidase in fourteen apparently healthy subjects was 0.146 +/- 0.023 nmol protoporphyrin IX per min per mg protein. In one patient with variegate porphyria, the activity was 0.028 nmol protoporphyrin IX per min per mg protein. The optimal pH for ferrochelatase was 7.4 and with protoporphyrin and Zn2+ as substrates, the Michaelis constants were 1.49 and 8.33 microM, respectively. The mean activity of ferrochelatase in ten control subjects was 0.24 nM Zn-protoporphyrin or 2.05 nM Zn-mesoporphyrin formed per h per mg protein.  相似文献   
112.
Isothermal vapor–liquid equilibrium data determined by the static method at 303.15 K are reported for the binary systems propyl vinyl ether + 1-propanol, 1-propanol + 2,2,4-trimethylpentane and propyl vinyl ether + 2,2,4-trimethylpentane and also for the ternary system propyl vinyl ether + 1-propanol + 2,2,4-trimethyl-pentane. Additionally, new excess volume data are reported for the same systems at 298.15 K. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and excess molar volume data were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively.  相似文献   
113.
We report kinetically controlled chiral supramolecular polymerization based on ligand–metal complex with a 3 : 2 (L : Ag+) stoichiometry accompanying a helical inversion in water. A new family of bipyridine-based ligands (d-L1, l-L1, d-L2, and d-L3) possessing hydrazine and d- or l-alanine moieties at the alkyl chain groups has been designed and synthesized. Interestingly, upon addition of AgNO3 (0.5–1.3 equiv.) to the d-L1 solution, it generated the aggregate I composed of the d-L1AgNO3 complex (d-L1 : Ag+ = 1 : 1) as the kinetic product with a spherical structure. Then, aggregate I (nanoparticle) was transformed into the aggregate II (supramolecular polymer) based on the (d-L1)3Ag2(NO3)2 complex as the thermodynamic product with a fiber structure, which led to the helical inversion from the left-handed (M-type) to the right-handed (P-type) helicity accompanying CD amplification. In contrast, the spherical aggregate I (nanoparticle) composed of the d-L1AgNO3 complex with the left-handed (M-type) helicity formed in the presence of 2.0 equiv. of AgNO3 and was not additionally changed, which indicated that it was the thermodynamic product. The chiral supramolecular polymer based on (d-L1)3Ag2(NO3)2 was produced via a nucleation–elongation mechanism with a cooperative pathway. In thermodynamic study, the standard ΔG° and ΔHe values for the aggregates I and II were calculated using the van''t Hoff plot. The enhanced ΔG° value of the aggregate II compared to that of the formation of aggregate I confirms that aggregate II was thermodynamically more stable. In the kinetic study, the influence of concentration of AgNO3 confirmed the initial formation of the aggregate I (nanoparticle), which then evolved to the aggregate II (supramolecular polymer). Thus, the concentration of the (d-L1)3Ag2(NO3)2 complex in the initial state plays a critical role in generating aggregate II (supramolecular polymer). In particular, NO3 acts as a critical linker and accelerator in the transformation from the aggregate I to the aggregate II. This is the first example of a system for a kinetically controlled chiral supramolecular polymer that is formed via multiple steps with coordination structural change.

The nanoparticles were transformed into the supramolecular polymer as the thermodynamic product, involving a helical inversion from left-handed to right-handed helicity.  相似文献   
114.
Solubilities of triethylamine in aqueous tetraethylammonium chloride solutions were measured at 20, 25, and 35°C. The molalities in Et4NCl of the aqueous solvents ranged from 0.03 to 1 mol-kg–1. The data were evaluated from density measurements using a vibrating-tube densimeter. At each temperature, least-squares method was used to fit experimental density data points to double polynomial equations of various degrees. Triethylamine molalities of the saturated aqueous phases were estimated by extrapolation from those equations. Experimental data were interpreted in terms of hydrophobic and electrostatic perturbed domains in the hydration shells of the noneleceory and of the cation of the salt, as a function of temperature and salt concentration. The conclusions obtained are consistent with previous volumetric studies.  相似文献   
115.
The presence of various counteranions at the interfacial region of the silicate-surfactant mesophase introduces opportunities for manipulation of the phase structure. Well-ordered 3D-hexagonal P63/mmc, cubic Pmn, 2D-hexagonal p6mm, and cubic Iad mesoporous materials have been synthesized with the same surfactant, cetyltriethylammonium bromide, in the presence of various acids. The counteranions of acidic media have resulted in increasing the surfactant packing parameter g in the order SO42- < Cl- < Br- < NO3-, which leads to the different time course of formation of mesostructures. The effect of counteranions on the formation of mesostructures is explained in terms of not only the adsorption strength on the headgroups of the surfactant micelle but also the rate of silica condensation affecting the charge density matching between the surfactant and silica. It has been found that the mesophase is always transformed from the larger g parameter into the smaller one. The distinct morphologies of the 3D-hexagonal P63/mmc mesophases have been rationally explained by supposing this particular mesostructure. The cubic Iad phase has been first synthesized under acidic conditions.  相似文献   
116.
The ground state (S(0)) and lowest-energy triplet state (T(1)) potential energy surfaces (PESs) concerning the thermal and photochemical rearrangement of bicyclo[3.1.0]hex-3-en-2-one (8) to the ketonic tautomer of phenol (11) have been extensively explored using ab initio CASSCF and CASPT2 calculations with several basis sets. State T(1) is predicted to be a triplet pipi lying 66.5 kcal/mol above the energy of the S(0) state. On the S(0) PES, the rearrangement of 8 to 11 is predicted to occur via a two-step mechanism where the internal cyclopropane C-C bond is broken first through a high energy transition structure (TS1-S(0)()), leading to a singlet intermediate (10-S(0)()) lying 25.0 kcal/mol above the ground state of 8. Subsequently, this intermediate undergoes a 1,2-hydrogen shift to yield 11 by surmounting an energy barrier of only 2.7 kcal/mol at 0 K. The rate-determining step of the global rearrangement is the opening of the three-membered ring in 8, which involves an energy barrier of 41.2 kcal/mol at 0 K. This high energy barrier is consistent with the fact that the thermal rearrangement of umbellulone to thymol is carried out by heating at 280 degrees C. Regarding the photochemical rearangement, our results suggest that the most efficient route from the T(1) state of 8 to ground state 11 is the essentially barrierless cleavage of the internal cyclopropane C-C bond followed by radiationless decay to the S(0) state PES via intersystem crossing (ISC) at a crossing point (S(0)()/T(1)()-1) located at almost the same geometry as TS1-S(0)(), leading to the formation of 10-S(0)() and the subsequent low-barrier 1,2-hydrogen shift. The computed small spin-orbit coupling between the T(1) and S(0) PESs at S(0)()/T(1)()-1 (1.2 cm(-)(1)) suggests that the ISC between these PESs is the rate-determining step of the photochemical rearrangement 8 --> 11. Finally, computational evidence indicates that singlet intermediate 10-S(0)() should not be drawn as a zwitterion, but rather as a diradical having a polarized C=O bond.  相似文献   
117.
118.
The 1H and 87Rb spin-lattice relaxation and spin-spin relaxation times in superionic Rb3H(SeO4)2 single crystals grown by the slow evaporation method were measured over the temperature range 160-450 K. The temperature dependencies of the 1H T1, T1ρ, and T2 are measured. In the ferroelastic phase, T1 differs from T1ρ, which is in turn different from T2, although these three relaxation times converge to similar values near 410 K. This transition seems to occur at temperature which is about 40 K lower than the superionic transition temperature. The observation of liquid-like values of the 1H T1, T1ρ, and T2 in the high temperature is compatible with the phase being superionic, indicating that the destruction and reconstruction of hydrogen bonds does indeed occur at high temperature. In addition, the 87Rb T1 and T2 values at high temperature were similar (on the order of milliseconds), a trend that was also observed for 1H T1 and T2. This behavior is expected for most hopping-type ionic conductors, and could be attributed to interactions between the mobile ions and the neighboring group ions within the crystal. The motion giving rise to this liquid-like behavior is related to the superionic motion.  相似文献   
119.
Summary The reduction of nickel(II) halides with NaBH4 in the presence of different ligands, L=PPh3, AsPh3, SbPh3, has been studied. With a molar ratio L/Ni=3, new complexes NiX(SbPh3)3, X=Cl, Br, I, were obtained. With a molar ratio L/Ni=2, dimeric species [NiXL2]2, X=Cl, Br, I; L=PPh3, AsPh3, SbPh3, were isolated. They are unstable and decompose easily in the solid and rapidly in solution, so that pure samples were only identified for X=Cl, L=PPh3, AsPh3, SbPh3; X=Br, L=PPh3 and X=I, L=PPh3. With a molar ratio L/Ni=1, complexes [NiXL]n (probably polymeric) were obtained. They are very unstable and pure samples could only be isolated when X=Cl, L=PPh3. Impure substances containing variable amounts of decomposition products were obtained in all the remaining cases. The chemical and structural behaviour of these complexes is discussed.  相似文献   
120.
Half-sandwich complexes of formula [(ηn-ring)MClL]PF6 [L = (S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-isopropyloxazoline; (ηn-ring)M = (η5-C5Me5)Rh; (η5-C5Me5)Ir; (η6-p-MeC6H4iPr)Ru; (η6-p-MeC6H4iPr)Os] have been prepared and spectroscopically characterised. The molecular structures of the rhodium and iridium compounds have been determined by X-ray crystallography. The related solvate complexes [(η5-C5Me5)ML(Me2CO)]2+ (M = Rh, Ir) are active catalysts for the Diels-Alder reaction between methacrolein and cyclopentadiene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号