首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   15篇
  国内免费   6篇
化学   354篇
力学   57篇
数学   113篇
物理学   135篇
  2023年   5篇
  2022年   22篇
  2021年   22篇
  2020年   16篇
  2019年   17篇
  2018年   12篇
  2017年   10篇
  2016年   33篇
  2015年   20篇
  2014年   16篇
  2013年   34篇
  2012年   42篇
  2011年   48篇
  2010年   23篇
  2009年   21篇
  2008年   43篇
  2007年   22篇
  2006年   32篇
  2005年   21篇
  2004年   28篇
  2003年   15篇
  2002年   11篇
  2001年   12篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1991年   5篇
  1990年   9篇
  1988年   4篇
  1987年   6篇
  1984年   3篇
  1983年   5篇
  1981年   5篇
  1980年   4篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1967年   2篇
  1966年   2篇
  1958年   2篇
排序方式: 共有659条查询结果,搜索用时 15 毫秒
31.
The metal‐directed supramolecular synthetic approach has paved the way for the development of functional nanosized molecules. In this work, we report the preparation of the new nanocapsule 3? (CF3SO3)8 with a A4B2 tetragonal prismatic geometry, where A corresponds to the dipalladium hexaazamacrocyclic complex Pd‐1 , and B corresponds to the tetraanionic form of palladium 5,10,15,20‐tetrakis(4‐carboxyphenyl)porphyrin ( 2 ). The large void space of the inner cavity and the supramolecular affinity for guest molecules towards porphyrin‐based hosts converts this nanoscale molecular 3D structure into a good candidate for host–guest chemistry. The interaction between this nanocage and different guest molecules has been studied by means of NMR, UV/Vis, ESI‐MS, and DOSY experiments, from which highly selective molecular recognition has been found for anionic, planar‐shaped π guests with association constants (Ka) higher than 109 M ?1, in front of non‐interacting aromatic neutral or cationic substrates. DFT theoretical calculations provided insights to further understand this strong interaction. Nanocage 3? (CF3SO3)8 can not only strongly host one single molecule of M(dithiolene)2 complexes (M=Au, Pt, Pd, and Ni), but also can finely tune their optical and redox properties. The very simple synthesis of both the supramolecular cage and the building blocks represents a step forward for the development of polyfunctional supramolecular nanovessels, which offer multiple applications as sensors or nanoreactors.  相似文献   
32.
33.
It is shown that the pseudo Jahn-Teller effect (PJTE) in combination with ab initio calculations explains the origin of instability of the planar configuration of tetrafluorocyclobutadiene, C(4)F(4), with respect to a puckered structure and square-to-rectangle distortion of the carbon ring, and rationalizes its difference from the planar-rectangular geometry of C(4)H(4) and nonplanar (puckered) structure of Si(4)H(4). The two types of instability and distortion of the high-symmetry D(4h) configuration in these systems emerge from the PJT coupling of the ground B(2g) state with the excited A(1g) term producing instability along the b(2g) coordinate (elongation of the carbon or silicon square ring), and with the excited E(g) term resulting in e(g) (puckering) distortion. A rhombic distortion b(1g) of the ring is also possible due to the coupling between excited A(1g) and B(1g) terms. For C(4)F(4), ab initio calculations of the energy profiles allowed us to evaluate the PJTE constants and to show that the two instabilities, square-to-tetragonal b(2g) and puckering e(g) coexist, thus explaining the origin of the observed geometry of this system in the ground state. The preferred cis-trans (e(g) type) puckering in C(4)F(4) versus trans-trans puckering (b(2u) distortion) in Si(4)H(4) follows from the differences in the energy gaps to their excited electronic E(g) and A(1u) terms causing different PJTE in these two cases.  相似文献   
34.
Atomic force microscopy is shown to be an excellent lithographic technique to directly deposit nanoparticles on graphene by capillary transport without any previous functionalization of neither the nanoparticles nor the graphene surface while preserving its integrity and conductivity properties. Moreover this technique allows for (sub)micrometric control on the positioning thanks to a new three-step protocol that has been designed with this aim. With this methodology the exact target coordinates are registered by scanning the tip over the predetermined area previous to its coating with the ink and deposition. As a proof-of-concept, this strategy has successfully allowed the controlled deposition of few nanoparticles on 1 μm(2) preselected sites of a graphene surface with high accuracy.  相似文献   
35.
A method that combines the use of non-destructive neutron activation analysis and high-resolution α spectrometry has been developed for determination of the activities of 234U and 238U in geological samples of low uranium content. The 238U content is determined by k0-based neutron activation analysis, whereas the 234U/238U relationship is measured by α spectrometry after isolation and electrodeposition of the uranium extracted from a lixiviation with 6 M HCl. The main advantage of the method is the simplicity of the chemical operations, including the fact that the steps destined to assure similar chemical state for the tracer and the uranium species present in the sample are not necessary. The method was applied to soil samples from sites of the North Peru Coast. Uranium concentration range 3–40 mg/kg and the isotopic composition correspond to natural uranium, with about 10% uncertainty.  相似文献   
36.
Although previous studies have demonstrated that the predominant photochemistry of type I collagen under 254 nm irradiation may be attributed either to direct absorption by tyrosine/phenylalanine or to peptide bonds, direct collagen photochemistry via solar UV wavelengths is much more likely to involve several age- and tissue-related photolabile collagen fluorophores that absorb in the latter region. In this study, we compare and contrast results obtained from irradiation of a commercial preparation of acid-soluble calf skin type I collagen in solution with UVC (primarily 254 nm), UVA (335–400nm) and broad-band solar-simulating radiation (SSR; 290^1–00nm). Excitation spectroscopy and analysis of photochemically induced disappearance of fluorescence (fluorescence fading) indicates that this preparation has at least four photolabile fluorescent chromophores. In addition to tyrosine and L-3,4-dihydroxyphenylalanine, our sample contains two other fluorophores. Chromophore I, with emission maximum at 360 nm, appears to be derived from interacting aromatic moieties in close mutual proximity. Chromophore II, with broad emission at430–435 nm, may be composed of one or more age-related molecules. Collagen fluorescence fading kinetics are sensitive to excitation wavelength and to conformation. Under UVC, chromophore I fluorescence disappears with second-order kinetics, indicating a reaction between two proximal like molecules. Adherence to second-order kinetics is abrogated by prior denaturation of the collagen sample. A new broad, weak fluorescence band at400–420 nm, attributable to dityrosine, forms under UVC, but not under solar radiation. This band is photolabile to UVA and UVB wavelengths. Amino acid analysis indicates significant destruction of aromatic amino acids under UVC, but not under UVA or SSR. When properly understood, collagen fluorescence fading phenomena may act as a sensitive molecular probe of structure, conformation and reactivity.  相似文献   
37.
38.
The chromonic liquid-crystalline properties of bis-(N,N-diethylaminoethyl)perylene-3,4,9,10-tetracarboxylic diimide dihydrochloride in an aqueous solution were investigated by polarized light microscopy and 2H NMR spectroscopy. Both techniques indicate a narrow I + N biphasic region and a broad N phase region at concentrations ranging from approximately 6.9 to approximately 30 wt % at room temperature. Optical microscopy indicates that a hexagonal M phase exists at higher concentrations. The variation of the I --> N + I and N + I --> N transition temperatures with concentration was studied by 2H NMR spectroscopy. Finally, the effects of temperature and concentration on the order parameter of the N phase were investigated by 2H NMR using a tetra-deuterated derivative. A value of 0.97 was obtained for the N phase at its upper concentration limit.  相似文献   
39.
In this work, kinetic data of crystallization processes have been determined by measurement of the intensities of reflection of X-ray diffraction spectra and modeled using the Avrami-Eroféev and Jander expressions. We have created a simple Microsoft Excel spreadsheet that allows students to calculate the kinetic data. Students will be able to calculate the kinetic parameters of any crystallization process, for example, hydrothermal crystallization of catalytic materials like zeolites. The possibility of using the spreadsheet with different models or expressions and discriminating among them is also validated by comparing the model results with experimental data (differential thermal analyses, DTA) from papers available in the recent literature.  相似文献   
40.
Several important clinical conditions can result in close association between the pigment melanin and dermal collagen. Because melanin and its precursors can be chemically reactive in ground and excited states, it is important to know whether the resulting melanin-collagen interaction results in photoprotection or photoaggression. Acidic and neutral air-saturated collagen suspensions (0.033%) were irradiated with0–2.6 times 104 J/m2 UVC or with0–83 times 104 J/m2 solar-simulating UV radiation (SSR). Photochemical destruction of a photolabile collagen fluorophore (δem 360 nm) and collagen chain degradation were monitored as functions of irradiation time in the presence and absence of added (0–100μg) sepia eumelanin. Melanin retarded collagen photodamage but did not qualitatively alter the fluorescence fading kinetics. Both H202 and 02 can be produced by UV irradiation of eumelanin. Added H202 and K02 destroyed collagen fluorescence and caused 50% chain degradation at ca10–20-fold molar excess. Previous studies have demonstrated that eumelanins efficiently scavenge 02 . We demonstrated that eumelanin also efficiently scavenges H202 as evidenced by its ability to (a) compete with scopoletin for peroxide uptake and (b) directly take up H202 through a dialysis bag. The latter observation suggests that peroxide scavenging could occur in vivo by melanin sequestered in melanophages. Thus, neither UV-generated 02 nor H202 are likely to be present in concentrations high enough to cause measurable collagen damage. Absorption and/or scattering of excitation radiation away from the target chromophore appears to be the primary photoprotection mechanism, although scavenging of active 02 intermediates may play an important, if subtle role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号