Summary: 1,3‐Bis(methacrylamido)propane‐2‐yl dihydrogen phosphate ( 1 ) was synthesised by phosphorylation of 1,3‐bis(methacrylamido)‐2‐hydroxypropane ( 2 ) with phosphorus oxychloride in tetrahydrofuran (THF) in the presence of triethylamine (TEA). The structure of the new monomer 1 was characterised by IR, 1H NMR, 13C NMR and 31P NMR spectroscopies, elemental analysis and mass spectrometry. The monomer dissolves well in water, ethanol or aqueous THF and shows an improved hydrolytic stability compared to the corresponding methacrylate‐based dihydrogen phosphates. 1 was homopolymerised in ethanol with 2,2′‐azoisobutyronitrile (AIBN) as the initiator at 55–75 °C under the formation of an insoluble, cross‐linked product. Aqueous solutions of 1 are strongly acidic and enable to etch enamel and dentin. Nevertheless, 1 did not show any cytotoxic effect. Furthermore, the adhesive properties of 1 were measured.
A library of dendrimers was synthesized and optimized for targeted small interfering RNA (siRNA) delivery to different cell subpopulations within the liver. Using a combinatorial approach, a library of these nanoparticle‐forming materials was produced wherein the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length, and evaluated for their ability to deliver siRNA to liver cell subpopulations. Interestingly, two lead delivery materials could be formulated in a manner to alter their tissue tropism within the liver—with formulations from the same material capable of preferentially delivering siRNA to 1) endothelial cells, 2) endothelial cells and hepatocytes, or 3) endothelial cells, hepatocytes, and tumor cells in vivo. The ability to broaden or narrow the cellular destination of siRNA within the liver may provide a useful tool to address a range of liver diseases. 相似文献
Colorless nonfluorescent chlorophyll (Chl) catabolites (NCCs) are formyloxobilin‐type phyllobilins, which are considered the typical products of Chl breakdown in senescent leaves. However, in degreened leaves of some plants, dioxobilin‐type Chl catabolites (DCCs) predominate, which lack the formyl group of the NCCs, and which arise from Chl catabolites by oxidative removal of the formyl group by a P450 enzyme. Here a structural investigation of the DCCs in the methylesterase16 mutant of Arabidopsis thaliana is reported. Eight new DCCs were identified and characterized structurally. Strikingly, three of these DCCs carry stereospecifically added hydroxymethyl groups, and represent bilin‐type linear tetrapyrroles with an unprecedented modification. Indeed, DCCs show a remarkable structural parallel, otherwise, to the bilins from heme breakdown. 相似文献
A new method was developed for the analysis of pesticide residues in tobacco. The objective was to significantly increase the number of samples that can be processed by the laboratory and to enable the extension of the current coverage to additional pesticides. A new analytical approach was therefore defined based on two main axes, the automation of the sample preparation and the selectivity of the analyte detection using tandem mass spectrometry. This latter aspect reduces the stringency of the requirements placed on the clean-up of the extracts and on the chromatographic resolution when less selective detectors are used. The extraction of the analytes from the matrix is performed using the pressurized liquid extraction technique. Tobacco samples are extracted at elevated temperature and pressure (100 C and 100 atm; 1 atm = 101,325 Pa) using acetone as an extraction solvent. The resulting extract is then concentrated using a Vortex evaporator. Three different solid-phase extraction (SPE) procedures, adjusted to the chemical properties of the different active ingredients to be measured, are applied to the concentrated extract, thus leading to three extract fractions. The first fraction contains such main classes of active ingredients as organohalogenated and 2,6-dinitroaniline compounds while the second one collects the organophosphorus and acylalanines residues; these two fractions are analyzed by capillary gas chromatography coupled to tandem mass spectrometry using negative chemical ionization and electron impact ionization in the positive mode, respectively. The third extract fraction gathers the N-methylcarbamates residues which are analyzed by HPLC with post-column derivatization and fluorescence detection. The different sample preparation stages from extraction to SPE clean-up have been automated through the use of recent analytical technologies. In combination with the analysis by tandem mass spectrometry, this provided a potential for a high sample throughput. 相似文献
[RuCl2(PPh3)3] reacts with thallium(I) fluoride to give either [Tl(mu-F)3Ru(PPh3)3] (1) or [Tl(mu3-F)(mu2-Cl)2Ru2(mu2-Cl)(mu2-F)(PPh3)4] (2) depending on the excess of TlF used. Both 1 and 2 were fully characterized, including X-ray structure determinations. Complex 1 reacts with dihydrogen to form the known ruthenium hydride complex [Ru(H)2(H2)(PPh3)3] upon hydrogenolysis of the Ru-F bond. The reaction of 1 with activated alkyl bromides (R-Br) gives the corresponding alkyl fluorides and the trinuclear complex [Tl(mu3-F)(mu2-F)(mu2-X)Ru2(mu2-Br)(mu2-F)(PPh3)4] (X=Br, F) (3), whose structure closely resembles that of 2. However, 1 is not active as catalyst for the nucleophilic fluorination of R-Br in the presence of thallium fluoride. The effect of the bridging coordination mode of fluoride on the Ru-F bond is discussed in terms of the HSAB principle, which suggests a more general model for predicting the stability of d6 and d8 complexes containing hard ligands (such as fluoro, oxo, and amido). 相似文献
Differential scanning calorimetry (DSC), isothermal stress testing–Fourier transform infrared spectroscopy (IST–FTIR), isothermal stress testing–high-performance liquid chromatography, and powder X-ray diffraction (PDRX) were used as screening techniques for assessing the compatibility of tobramycin with some currently employed ophthalmic excipients. In the first phase of the study, DSC was used as a tool to detect any interaction. The absolute value of the difference between the enthalpy of the pure tobramycin melting peak and that of its melting peak in the different analyzed mixtures was chosen as a parameter of the drug–excipient interaction degree. DSC results demonstrated that benzalkonium chloride, monobasic sodium phosphate, boric acid, edetate disodium, sodium metabisulfite, thimerosal, and potassium sorbate interact with tobramycin. Taking into account these results, it could be suggested that some of the changes observed in the IST–FTIR spectra of binary blends of tobramycin and some of the excipients would account for a possible interaction between the mixture component. In this study, PDRX did not provide much information, since only tobramycin–thimerosal interactions could be detected. DSC and IST–FTIR are suitable and simple methods for the detection of potential incompatibilities between active pharmaceutical ingredient (API) and excipients.