Concerning the increased market for bio-based materials and environmentally safe practices, cellulose-based beads are one of the more attractive alternatives. Thus, this work focuses on the generation of functional cellulose-based beads with a relatively simple and direct method of blending a pre-modified chitosan bearing the targeted functional groups and cellulose, prior to the formation of the beads, as a mean to have functional groups in the formed structure. To this end, chitosan was chemically modified with propargyl bromide in homogenous reaction conditions and then combined with cellulose in sodium hydroxide/urea solution and coagulated in nitric acid to produce spherical shaped beads. The successful chemical modification of chitosan was assessed by elemental analysis, as well as by Fourier-transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The alkynyl moieties from the chitosan derivative, served as reactive functional groups for click-chemistry as demonstrated by the tagging of the commercial fluorophore Azide-Fluor 488 via CuI-catalysed alkyne-azide cycloaddition reaction, in aqueous media. This work demonstrates the one-step processing of multiple polysaccharides for functional spherical beads as a template for bio-based scaffolds such as enzyme immobilization for stimuli-response applications and bioconjugations.
In this paper we consider the 2-dimensional flow of a Stokesian fluid in a Hele-Shaw cell. The motion of the flow is modelled
by a modified Darcy’s law. The existence of local solutions has been proved by the authors in a recent work, cf. [4]. The
purpose of this paper is to identify the steady states of this flow and to study their stability.
The equilibria will be identified as solutions of elliptic free boundary problems. It is shown that if the pressure on the
bottom is constant then the corresponding steady state is asymptotically stable.
相似文献
In this work we consider a Transportation Location Routing Problem (TLRP) that can be seen as an extension of the two stage Location Routing Problem, in which the first stage corresponds to a transportation problem with truck capacity. Two objectives are considered in this research, reduction of distribution cost and balance of workloads for drivers in the routing stage. Here, we present a mathematical formulation for the bi-objective TLRP and propose a new representation for the TLRP based on priorities. This representation lets us manage the problem easily and reduces the computational effort, plus, it is suitable to be used with both local search based and evolutionary approaches. In order to demonstrate its efficiency, it was implemented in two metaheuristic solution algorithms based on the Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization (SSPMO) and on the Non-dominated Sorting Genetic Algorithm II (NSGA-II) strategies. Computational experiments showed efficient results in solution quality and computing time. 相似文献
The aim of this paper is to introduce some operators induced by the Jacobi differential operator and associated with the Jacobi semigroup, where the Jacobi measure is considered in the multidimensional case.In this context, we introduce potential operators, fractional integrals, fractional derivates, Bessel potentials and give a version of Carleson measures.We establish a version of Meyer’s multiplier theorem and by means of this theorem, we study fractional integrals and fractional derivates.Potential spaces related to Jacobi expansions are introduced and using fractional derivates, we give a characterization of these spaces. A version of Calderon’s Reproduction Formula and a version of Fefferman’s theorem are given.Finally, we present a definition of Triebel–Lizorkin spaces and Besov spaces in the Jacobi setting. 相似文献
We give a method to obtain formal normal forms of reversible equivariant vector fields. The procedurewe present is based on the classical method of normal forms combined with tools from invariant theory. Normal forms of two classes of resonant cases are presented, both with linearization having a 2-dimensional nilpotent part and a semisimple part with purely imaginary eigenvalues. 相似文献
We consider an incompressible ferrofluid in a vertical Hele–Shaw cell and develop a proper analytic framework for the free interface and the velocity potential of the fluid in a periodic geometry. The flow is assumed to obey a non-Newtonian Darcy law. The forces influencing the fluid are gravity, surface tension and the response to a magnetic field induced by a current. In addition, the flow is stabilized at the lower boundary component by an external source b. We prove a well-posedness result for the flow near flat solutions. Moreover, we find conditions on the parameters and on the slope of b for the exponential stability and instability of flat interfaces. Furthermore, we identify values for the current's intensity ι where critical bifurcation of nontrivial finger-shaped solutions from the branch of trivial (flat) solutions takes place. 相似文献
This paper reports the results of a research exploring the mathematical connections of pre-university students while they solving tasks which involving rates of change. We assume mathematical connections as a cognitive process through which a person finds real relationships between two or more ideas, concepts, definitions, theorems, procedures, representations or meanings or with other disciplines or the real-world. Four tasks were proposed to the 33 pre-university students that participated in this research; the central concept of the first task is the slope, the last three tasks contain concepts like velocity, speed and acceleration. Task-based interviews were conducted to collect data and later analysed with thematic analysis. Results showed most of the students made mathematical connections of the procedural type, the mathematical connections of the common features type are made in smaller quantities and the mathematical connection of the generalization type is scarcely made. Furthermore, students considered slope as a concept disconnected from velocity, speed and acceleration. 相似文献
Slope is a fundamental mathematics concept in middle and high school that transcends to the university level. An understanding of slope is needed at the university level since slope plays an important role in understanding problems involving variation and change. In this study Mexican curricula documents were examined to determine which conceptualizations of slope are addressed in the intended mathematics curriculum. To explain the results, we use conceptualizations of slope identified in previous research. Our findings reveal that, to a certain extent, the conceptualizations proposed in the Mexican intended mathematics curriculum differ slightly in terms of the emphasis and timing of instruction from what others have identified in the U.S., with slope as a geometric ratio receiving less emphasis in the Mexican curriculum. There was also noted discontinuity within the Mexican curriculum in introducing slope in grade 9 and subsequently introducing of linear functions in grade 10 without explicit mention of slope. Suggestions are made for future studies, both to consider the conceptualizations of slope promoted in the Mexican textbooks and the impact they have in classroom instruction and student learning of slope. 相似文献