首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1810篇
  免费   37篇
  国内免费   7篇
化学   1435篇
晶体学   9篇
力学   18篇
数学   154篇
物理学   238篇
  2024年   1篇
  2023年   11篇
  2022年   77篇
  2021年   101篇
  2020年   40篇
  2019年   60篇
  2018年   76篇
  2017年   50篇
  2016年   72篇
  2015年   76篇
  2014年   59篇
  2013年   165篇
  2012年   83篇
  2011年   107篇
  2010年   94篇
  2009年   77篇
  2008年   106篇
  2007年   121篇
  2006年   83篇
  2005年   88篇
  2004年   56篇
  2003年   63篇
  2002年   47篇
  2001年   15篇
  2000年   11篇
  1999年   23篇
  1998年   13篇
  1997年   17篇
  1996年   23篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   12篇
  1991年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有1854条查询结果,搜索用时 15 毫秒
21.
Si nanoparticles (NPs), which are innovative promising light-harvesting components of thin-film solar cells and key-enabling biocompatible theranostic elements of infrared-laser and radiofrequency hyperthermia-based therapies of cancer cells in tumors and metastases, are significantly advanced in their near/mid-infrared band-to-band and free-carrier absorption via donor sulfur-hyperdoping during high-throughput facile femtosecond-laser ablative production in liquid carbon disulfide. High-resolution transmission electron microscopy and Raman microscopy reveal their mixed nanocrystalline/amorphous structure, enabling the extraordinary sulfur content of a few atomic percents and very minor surface oxidation/carbonization characterized by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. A 200-nm thick layer of the nanoparticles exhibits near−mid-infrared absorbance, comparable to that of the initial 380-micron thick n-doped Si wafer (phosphor-dopant concentration ≈1015 cm−3), with the corresponding extinction coefficient for the hyperdoped NPs being 4–7 orders higher over the broadband spectral range of 1–25 micrometers. Such ultimate, but potentially tunable mid-IR structured, multi-band absorption of various sulfur-impurity clusters and smooth free-carrier absorption are break through advances in mid-infrared (mid-IR) laser and radiofrequency (RF) hyperthermia-based therapies, as envisioned in the RF-heating tests, and in fabrication of higher-efficiency thin-film and bulk photovoltaic devices with ultra-broad (UV−mid-IR) spectral response.  相似文献   
22.
Water-soluble double-coated magnetic nanoparticles (NPs) containing cytotoxic decyldimethyl(ββ-dimethylaminoethoxy)silane methiodide (AA) molecule sorbed at biocompatible magnetic particles, which consist of magnetite pre-coated with oleic acid (OA), have been prepared. X-ray line profile broadening analysis was used for crystallite size determination. The method of magnetogranulometry has been used for determination of diameter of iron oxide magnetic core and magnetic properties of NPs prepared. In vitro cytotoxicity on monolayer tumor cell lines HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma) and normal mouse fibroblasts (NIH 3T3) has been studied. It was revealed that all the water-based colloidal solutions obtained are non-toxic and possess high NO-induction ability.  相似文献   
23.
24.
Using results of equilibrium molecular dynamics simulation in conjunction with the Green–Kubo formalism, we present a general treatment of thermal impedance of a crystal lattice with a monatomic unit cell. The treatment is based on an analytical expression for the heat current autocorrelation function which reveals, in a monatomic lattice, an energy gap between the origin of the phonon states and the beginning of the energy spectrum of the so-called acoustic short-range phonon modes. Although, we consider here the f.c.c. Al model as a case example, the analytical expression is shown to be consistent for different models of elemental f.c.c. crystals over a wide temperature range. Furthermore, we predict a frequency ‘window’ where the thermal waves can be generated in a monatomic lattice by an external periodic temperature perturbation.  相似文献   
25.
The recently introduced analytical model for the heat current autocorrelation function of a crystal with a monatomic lattice [Evteev et al., Phil. Mag. 94 (2014) p. 731 and 94 (2014) p. 3992] is employed in conjunction with the Green–Kubo formalism to investigate in detail the results of an equilibrium molecular dynamics calculations of the temperature dependence of the lattice thermal conductivity and phonon dynamics in f.c.c. Ni. Only the contribution to the lattice thermal conductivity determined by the phonon–phonon scattering processes is considered, while the contribution due to phonon–electron scattering processes is intentionally ignored. Nonetheless, during comparison of our data with experiment an estimation of the second contribution is made. Furthermore, by comparing the results obtained for f.c.c. Ni model to those for other models of elemental crystals with the f.c.c. lattice, we give an estimation of the scaling relations of the lattice thermal conductivity with other lattice properties such as the coefficient of thermal expansion and the bulk modulus. Moreover, within the framework of linear response theory and the fluctuation-dissipation theorem, we extend our analysis in this paper into the frequency domain to predict the power spectra of equilibrium fluctuations associated with the phonon-mediated heat dissipation in a monatomic lattice. The practical importance of the analytical treatment lies in the fact that it has the potential to be used in the future to efficiently decode the generic information on the lattice thermal conductivity and phonon dynamics from a power spectrum of the acoustic excitations in a monatomic crystal measured by a spectroscopic technique in the frequency range of about 1–20 THz.  相似文献   
26.
Electrochemical reduction (ECR) and oxidation (ECO) of 5,6,7,8‐tetrafluoroquinoxaline ( 1 ) and its derivatives bearing various substituents R (7‐H ( 2 ), 7,8‐H2 (3 ), 6‐CF3 ( 4 ), 6‐Cl ( 5 ), 5,7‐Cl2 ( 6 ), 5‐NH2 ( 7 ), 6‐OCH3 ( 8 ), 6,7‐(OCH3)2 ( 9 ), 6,7,8‐(OCH3)3 ( 10 ), 5,6,7,8‐(OCH3)4 ( 11 ), 6‐OCH3,7‐N(CH3)2 ( 12 ), 6‐N(CH3)2 ( 13 ), 6,7‐(N(CH3)2)2 ( 14 ), 5,6,7‐(N(CH3)2)3 ( 15 ), and 7,8‐cyclo‐(=CF‐CF = CF‐CF=) ( 16 )) in the carbocycle have been studied by cyclic voltammetry in MeCN. For 1 – 4 and 7 – 15 , the first reduction peaks have been found to be 1‐electron and reversible, thus corresponding to the formation of their radical anions (RAs), which are long lived at 295 K except those of 4 – 6 and 15 , 16 . Irreversible hydrodechlorination has been observed for 5 and 6 at the first step of their ECR confirmed by EPR detection of corresponding RAs of 2 and 5,7‐H2 derivative of 1 ( 17 ) at the next steps. Electrochemically generated RAs of 1 – 3 , 7 – 14 , and 17 have been characterized in MeCN by EPR spectroscopy together with DFT calculations at the (U)B3LYP/6‐31 + G(d) level of theory using PCM to describe the solvent. A noticeable alternation of spin density on the –NCCN– moiety of quinoxaline has been observed for all RAs possessing R‐substitution asymmetry. The comparative electron‐accepting ability of 1 – 15 has been analyzed in terms of their experimental reduction peak potentials and the (U)B3LYP/6‐31 + G(d)‐calculated gas‐phase first adiabatic electron affinities (EAs). The differences in electron transfer solvation energies for 1 – 15 have been evaluated on the basis of ECR peaks' potentials and calculated gas‐phase EAs. The ECO of 1 – 5 and 7 – 14 has been found to be irreversible.  相似文献   
27.
28.
An analytical treatment of decomposition of the phonon thermal conductivity of a crystal with a monatomic unit cell is developed on the basis of a two-stage decay of the heat current autocorrelation function observed in molecular dynamics simulations. It is demonstrated that the contributions from the acoustic short- and long-range phonon modes to the total phonon thermal conductivity can be presented in the form of simple kinetic formulas, consisting of products of the heat capacity and the average relaxation time of the considered phonon modes as well as the square of the average phonon velocity. On the basis of molecular dynamics calculations of the heat current autocorrelation function, this treatment allows for a self-consistent numerical evaluation of the aforementioned variables. In addition, the presented analysis allows, within the Debye approximation, for the identification of the temperature range where classical molecular dynamics simulations can be employed for the prediction of phonon thermal transport properties. As a case example, Cu is considered.  相似文献   
29.
Time-resolved single-crystal diffraction performed with synchrotron radiation shows that the 53(1) micros phosphorescent state, generated in the crystalline phase of trimeric {[3,5-(CF3)(2)Pyrazolate]Cu}(3) molecules by exposure to 355 nm of light at 17 K, is due to the formation of an excimer rather than the shortening of the intramolecular Cu...Cu distances within the trimeric units, or the formation of a continuous chain of interacting molecules. One of the intermolecular Cu...Cu distances contracts by 0.56 Angstroms from 4.018(1) to 3.46(1) Angstroms;, whereas the interplanar spacing of the trimers is reduced by 0.65 Angstroms; from 3.952(1) to 3.33(1) Angstroms. Density-functional theory calculations support the formation of a Cu...Cu bond through the intermetallic transfer of a Cu 3d electron to a molecular orbital with a large 4p contribution on the reacting Cu atoms.  相似文献   
30.
Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should in most circumstances be the same as in the random energy model. We review some rigorous results confirming the validity of this conjecture. In the context of the SK models, we analyse the limits of the validity of the conjecture for energy levels growing with the volume of the system. In the case of the Generalised Random energy model, we give a complete analysis for the behaviour of the local energy statistics at all energy scales. In particular, we show that, in this case, the REM conjecture holds exactly up to energies E N < β c N, where β c is the critical temperature. We also explain the more complex behaviour that sets in at higher energies. Research supported in part by the DFG in the Dutch-German Bilateral Research Group “Mathematics of Random Spatial Models from Physics and Biology” and by the European Science Foundation in the Programme RDSES.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号