首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78822篇
  免费   378篇
  国内免费   378篇
化学   24829篇
晶体学   790篇
力学   6752篇
数学   32104篇
物理学   15103篇
  2022年   31篇
  2021年   38篇
  2018年   10436篇
  2017年   10271篇
  2016年   6089篇
  2015年   876篇
  2014年   319篇
  2013年   357篇
  2012年   3824篇
  2011年   10556篇
  2010年   5676篇
  2009年   6069篇
  2008年   6629篇
  2007年   8805篇
  2006年   270篇
  2005年   1340篇
  2004年   1566篇
  2003年   2000篇
  2002年   1042篇
  2001年   252篇
  2000年   295篇
  1999年   167篇
  1998年   197篇
  1997年   160篇
  1996年   205篇
  1995年   123篇
  1994年   80篇
  1993年   103篇
  1992年   60篇
  1991年   65篇
  1990年   56篇
  1989年   62篇
  1988年   63篇
  1987年   63篇
  1986年   65篇
  1985年   53篇
  1984年   49篇
  1983年   42篇
  1982年   46篇
  1981年   44篇
  1980年   49篇
  1979年   54篇
  1978年   39篇
  1973年   30篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   
962.
A kind of novel mesoporous, electrochemical active material, amorphous MnO2 has been synthesized by an improved reduction reaction and using supramolecular as template. The synthesized sample was characterized physically by thermogravimetric analysis, X-ray diffraction, transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET) surface area measurement, respectively. Electrochemical characterization was performed using cyclic voltammetry and chronopotentiometry in 2 mol/l KOH aqueous solution electrolyte. The results of BET and TEM analysis indicated that supramolecular template plays an important role in the process of big specific surface area mesoporous material forming. After sintering at 200 °C, the sample still remained an amorphous structure, and its specific capacitance reached 298.7 F/g and presented a very stable capacitance after 500 cycles. In addition, the electrochemical process, such as ion transfer and electrical condition, was also investigated with electrochemical impedance spectroscopy.  相似文献   
963.
Diphenylphosphine oxidatively adds to the ReRe bonds of Re2 X 4(-dppm)2 (X=Cl or Br; dppm=Ph2PCH2PPh2) and Re2Cl4(-dpam)2 (dpam=Ph2AsCH2AsPh2) to afford the dirhenium(III) complexes Re2(-X)(-PPh2)HX 3(-LL)2. The dppm complexes have also been prepared from the reactions of Re2(-O2CCH3)X 4(-dppm)2 with Ph2PH, and a similar strategy has been used to prepare Re2(-Cl)(-PPh2)HCl3(-dmpm)2 (dmpm=Me2PCH2PMe2) from Re2(-O2CCH3)Cl4(dmpm)2. Phenylphosphine likewise reacts with Re2 X 4(-dppm)2 to give Re2(-X)(-PHPh)HX 3(-dppm)2. An X-ray crystal structure determination on Re2(-Cl)(-PPh2)HCl3(-dppm)2 confirms its edge-shared bioctahedral structure. This complex crystallizes in the space group (No. 148) witha=21.699(3) Å, =84.50(4)°,V=10084(5) Å3, andZ=6. The structure was refined toR=0.049 (R w 0.069) for 5770 data withI>3.0(I). The Re-Re distance is 2.5918(7) Å. Oxidation of the bromide complex Re2(-Br)(-PPh2)HBr3(-dppm)2 with NOPF6 produces the unusual dirhenium(III, II) cation [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]+ which has been structurally characterized as its perrhenate salt, [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]ReO4 · 2CH2Cl2. This complex crystallizes in the space group (No. 2) witha=14.187(7) Å,b=16.419(5) Å,c=16.729(5) Å, =98.76(2)°, =110.11(3)°, =104.66(3)°,V=3414(6) Å3,Z=2. The structure was refined toR=0.040 (R w =0.051) for 5736 data withI>3.0(I). The presence of a phosphorus-bound [P(O)Ph2] ligand, a linear nitrosyl and a bridging hydrido ligand has been confirmed. The Re-Re distance is 2.6273(8) Å.  相似文献   
964.
A heterogeneous, multi-layer mass transfer model is proposed for prediction of the effect of multi-layer packing of catalyst particles adhered to the gas-liquid interface. The behavior of the mass transfer rate with respect to the multi-layer packing, to the particle size and mass transfer coefficient without particles is discussed. It is shown that enhancement can be considerably increased by multi-layer packing compared to that of mono-layer packing, depending on the values of particle size and mass transfer coefficient. The predicted mass transfer rates using the proposed model was verified with experimental data taken from the literature. The model presented should be superior to that of published in the literature.  相似文献   
965.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   
966.
The ionic liquid 1-N-butyl-3-methylimidazolium chloride ([C4mim]+Cl) was investigated as reaction media for the homogeneous acylation of cellulose with 2-furoyl chloride in the presence of pyridine. The preparation of cellulose furoate depending on the reaction conditions, the cellulose type and the pyridine content was studied. Cellulose furoates with a degree of substitution in the range from 0.46 to 3.0 were accessible, i.e., under mild conditions, with a low excess of reagent and in a short reaction time. The products were characterized by elemental analysis, perpropionylation, 1H- and 13C NMR spectroscopy and FTIR spectroscopy. Thomas Heinze is the member of the European Polysaccharide Network of Excellence (EPNOE), www.epnoe.eu  相似文献   
967.
In this study, poly(N-methylolacrylamide)/polymethylacrylamide (PNMA/PMAA) hybrids were produced successfully by frontal free-radical polymerization at ambient pressure. In a typical run, the appropriate amounts of reactants (N-methylolacrylamide, NMA; methylacrylamide, MAA) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide at ambient temperature. Frontal polymerization (FP) was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self-propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. The dependences of the front velocity and front temperature on the initiator concentration, reactant dilution, and NMA/MAA components were thoroughly investigated. The front temperatures were between 69 and 116 °C, depending on the persulfate concentration. We have also investigated the FP of PNMA/PMAA hybrids with N-methyl-2-pyrrolidone as solvent. Results show that FP can be exploited as a means for the preparation of PNMA/PMAA hybrids with the potential advantage of higher throughput compared to the traditional mode.  相似文献   
968.
A new compound (5R, 10R)-3,8-dihydroxy-5,10-diethoxy-5,10-dihydrochromeno[5,4,3-cde]chromene monohydrate was obtained from 3,4-dihydroxybenzaldehyde in aerobic basic aqueous ethanol solution in the presence of manganese chloride and triethylamine and crystallized in orthorhombic P212121 space group (denoted as 1). When 1 was recrystallized from aqueous methanol, it was transformed to another crystal (2) with the same composition but in P21/n space group. The drastic difference in the extensive hydrogen bond network makes 1 a 3D and 2 a 2D infinite supramolecular structure, respectively.  相似文献   
969.
Nanoparticles of α-phase nickel hydroxide were synthesized by a single-step hydrothermal method using urea as the hydrolytic agent. Precipitated powders were of pure turbostratic α-phase as confirmed by x-ray diffraction profile. The ageing of α-Ni(OH)2 in 1.0 M alkali solutions is investigated for pure non-intercalated α-Ni(OH)2 and thiourea intercalated/absorbed α-phase nanomaterials. The α-Ni(OH)2 powder immobilized on the surface of graphite electrodes shows a gradual α→β phase transformation with continuous voltammetric cycling, and the concentration gradient of water that exists in the layered-double-hydroxide-like interlayers of α-phase and the solution was shown to play a crucial role on the high electrochemical activity of this phase nickel hydroxide. To understand the role of water in the ageing process, concomitant entries of non-aqueous solvents like ethanol and acetonitrile along with thiourea were effected. Cyclic voltammetric measurements of thiourea-treated α-Ni(OH)2 samples revealed that hydroxyl ion influx during the anodic oxidation depends on the counter flux of solvent molecules, and if the intercalated the solvent is acetonitrile, then the electrochemical activity of α-Ni(OH)2 reduced drastically; Q a/Q c>1 for water as solvent in the interlayers α-Ni(OH)2 and Q a/Q c<1 for ethanol and acetonitrile as solvents. The α-phase gets stabilized in the presence of thiourea with water and ethanol as co-intercalates. Transmission electron microscope images of α-Ni(OH)2 and thiourea-treated samples show a change in particle size and morphology. Elemental CHNS analysis confirms the presence of sulphur in the thiourea intercalated samples.  相似文献   
970.
Biodegradable polyurethanes are an interesting alternative to many applications that involve plastics since they can minimize environmental problems caused by the low rates of natural degradation of synthetic polymers. In addition, since waterborne polyurethanes are based on aqueous dispersions, they restrict the use of organic solvents during processing and application of the polymer, thus contributing furthermore to reduce environmental damage. In this work, aqueous anionic polyurethane dispersions (PUD) with tailorable susceptibility for hydrolysis were synthesized by progressively replacing polypropylene glycol (PPG) with a biodegradable polycaprolactone diol (PCL) as soft segments. The hard segments were formed by extending isophorone diisocyanate (IPDI) with hydrazine (HZ). Dimethylol propionic acid (DMPA) was used as ionic center and triethyl amine (TEA) as neutralizer. The degree of phase separation was evaluated mainly by infrared spectroscopy (FTIR) and small angle X-ray scattering (SAXS). The results indicated that phase separation between hard and soft segments of poly(ester-urethane) is more significant than that of poly(ether-urethane). Data obtained from SAXS experiments indicated that phase separation within soft domains can also be present in samples containing both polyester and polyether soft segments. Hydrolytic degradation of the polymers in buffer solution of pH 7.4 and alkaline solution was performed as an initial test. The results showed that the fraction of polyester soft segments in the polyurethanes can be used to tailor the susceptibility of the materials to hydrolytic attack. Polyurethanes having higher contents of polyester were more promptly hydrolytically degraded than polyurethanes containing only polyether segments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号