首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   958篇
  免费   57篇
  国内免费   15篇
化学   640篇
晶体学   2篇
力学   57篇
数学   158篇
物理学   173篇
  2024年   3篇
  2023年   11篇
  2022年   23篇
  2021年   45篇
  2020年   39篇
  2019年   59篇
  2018年   54篇
  2017年   61篇
  2016年   80篇
  2015年   47篇
  2014年   70篇
  2013年   117篇
  2012年   63篇
  2011年   69篇
  2010年   50篇
  2009年   45篇
  2008年   33篇
  2007年   21篇
  2006年   14篇
  2005年   10篇
  2004年   18篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   1篇
  1998年   3篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1992年   2篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   9篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有1030条查询结果,搜索用时 15 毫秒
21.
A simple and accurate expression for radial distribution function (RDF) of the Lennard-Jones fluid is presented. The expression explicitly states the RDF as a continuous function of reduced interparticle distance, temperature, and density. It satisfies the limiting conditions of zero density and infinite distance imposed by statistical thermodynamics. The distance dependence of this expression is expressed by an equation which contains 11 adjustable parameters. These parameters are fitted to 353 RDF data, obtained by molecular dynamics calculations, and then expressed as functions of reduced distance, temperature and density. This expression, having a total of 65 constants, reproduces the RDF data with an average root-mean-squared deviation of 0.0152 for the range of state variables of 0.5  T*  5.1 and 0.35  ρ*  1.1 (T*=kT/ε and ρ* = ρσ3 are reduced temperature and density, respectively). The expression predicts the pressure and the internal energy of the Lennard-Jones fluid with an uncertainty that is comparable to that obtained directly from the molecular dynamics simulations.  相似文献   
22.
DFT method (B3LYP) with 6-31G* basis set was utilized in the computation of a fully optimized structure, net atomic charges and spin densities of the intermediate of cytochrome P-450-oxoiron(IV) porphyrin cation radical, compound I – in the presence of axial ligand such as thiolate (SMe) imidazole (IM), phenoxide (OPh), methoxide (OMe) and chloride (Cl). The results show doublet states in compound I are about 2–4 kcal/mol more stable than quartet states for all aforementioned ligands, and the doublet state is the ground state in all cases. However, electron donor ability of the ligands are in the order of SMe− > IM > OMe− > OPh− > Cl. Also the active oxidant intermediate of cytochrome P-450 between different mesomeric structures select sulfur oxygen radical type structure and can be viewed as (RS)Fe(IV)(O)(Por). In horseraddish peroxidase (HRP) and peroxidase with histidine axial ligand π cation radical character of porphyrin ring is preferred (Im)Fe(IV)(O)(Por). For the ligands such as OMe, OPh and Cl oxidation mainly took place on the iron and the active intermediate can be viewed as (L)Fe(V)(O)(Por) with one unpaired electron localized on the iron.  相似文献   
23.
Mixed ion-pairs based on the use of ephedrinium (EPH)-TPB plus EPH-reineckate (II) and phenylephrine-TPB plus EPH-reineckate (III) were tried for use in plastic membranes. The results were compared to those of an EPH-reineckate (I) single ion-pair electrode. The Nernstian slopes were 50, 49 and 55 mV decade–1 for membranes I, II and III, respectively. The linear concentration ranges were 10–5–10–1, 4.0 × 10–5–10–1 and 6.3 ×–5–10–1 M ephedrine. The detection limits were 4 ×–6,10–5 and 1.2 × 10–5 M ephedrine for membranes I, II and III, respectively. The pH ranges were 4–9, 3–9 and 2–8 for I, II and III-membranes, respectively. Selectivity coefficient values for membrane II were better than those for membranes I and III. The effects of increasing KC1 concentration and temperature changes were explained for the three electrodes. The isothermal temperature coefficients were 0.00145, 0.0007 and 0.00055 V/ °C for electrodes I, II and III. Electrode III was applied for the determination of ephedrine in its pharmeaceutical preparations with an overall relative standard deviation range of 1.3–2.4% and an overall mean recovery value of 98.1%.  相似文献   
24.
Tribochemical reactions of KBr, KI and CaI2 with [Cu(L)Cl2(EtOH)3/2(H2O)]1/2H2O (L = formylhydrazine) give novel CuI and CuII complexes, which have been characterized by elemental analyses, spectral (i.r., u.v.–vis., 1H-n.m.r.) and magnetic measurements. The i.r. spectra indicate that (L) behaves in a monodentate manner, coordinating via the azomethine nitrogen (C-N) group in the CuII complexes, but behaving as a bidentate ligand, via the carbonyl oxygen and NH2 groups in the CuI complexes. KI and CaI2 react with [Cu(L)Cl2(EtOH)3/2(H2O)]-1/2H2O in the solid state, accompanied by a colour change, substitution of the chloride by iodide ions, and reduction of CuII to CuI to give complexes with formulae [Cu(L)I(EtOH)1/2] and [Cu1.7(L)I1.7(EtOH)1/2]. On the other hand, the tribochemical reaction of KBr with [Cu(L)Cl2(EtOH)3/2(H2O)]1/2H2O is accompanied by a colour change; substitution of the chloride by bromide ions, but without reduction of CuII and yields a complex of formula [Cu(L)2Br2(EtOH)(H2O)]1/2EtOH. The spectral and magnetic results suggest a distorted octahedral geometry for the CuII complexes while a tetrahedral geometry around the CuI ion. The non-stoichiometric structure of [Cu1.7(L)I1.7(EtOH)1/2] is discussed.  相似文献   
25.
A synthesis of 5,11b-dihydro-1H-dibenzo[d,f][1,3]diazepin-1-ones was found in the reaction of nitro-substituted N1,N2-diarylamidines with 3,4,5,6-tetrachloro-1,2-benzoquinone. In contrast, 6,7,8,9-tetrachlorodibenzodioxins were obtained from reaction of N1,N2-diphenylpropionamidine and N1,N2-di-(4-tert-butylphenyl)acetamidine with 3,4,5,6-tetrachloro-1,2-benzoquinone.  相似文献   
26.
Trace analysis of phenolic compounds in water was performed by coupling single-drop microextraction (SDME) with in-syringe derivatization of the analytes and GC-MS analysis. The analytes were extracted from a 3ml sample solution using 2.5microl of hexyl acetate. After extraction, derivatization was carried out in syringe barrel using 0.5microl of N,O-bis(trimethylsilyl)acetamide. The influence of derivatizing reagent volume, derivatization time and temperature on the yield of the in-syringe silylation was investigated. Derivatization reaction is completed in 5min at 50 degrees C. Experimental SDME parameters, such as selection of organic solvent, sample pH, addition of salt, extraction time and temperature of extraction were studied. Analytical parameters, such as enrichment factor, precision, linearity and detection limits were also determined. The limits of detection were in the range of 4-61ng/l (S/N=3). The relative standard deviations obtained were between 4.8 and 12% (n=5).  相似文献   
27.
Relying on the quantum tunnelling concept and Maxwell–Boltzmann–Gibbs statistics, Gamow shows that the star-burning process happens at temperatures comparable to a critical value, called the Gamow temperature (T) and less than the prediction of the classical framework. In order to highlight the role of the equipartition theorem in the Gamow argument, a thermal length scale is defined, and then the effects of non-extensivity on the Gamow temperature have been investigated by focusing on the Tsallis and Kaniadakis statistics. The results attest that while the Gamow temperature decreases in the framework of Kaniadakis statistics, it can be bigger or smaller than T when Tsallis statistics are employed.  相似文献   
28.
Various chitosan (CS)-based nanoparticles (CS-NPs) of ciprofloxacin hydrochloride (CHCl) have been investigated for therapeutic delivery and to enhance antimicrobial efficacy. However, the Box–Behnken design (BBD)-supported statistical optimization of NPs of CHCl has not been performed in the literature. As a result, the goal of this study was to look into the key interactions and quadratic impacts of formulation variables on the performance of CHCl-CS-NPs in a systematic way. To optimize CHCl-loaded CS-NPs generated by the ionic gelation process, the response surface methodology (RSM) was used. The BBD was used with three factors on three levels and three replicas at the central point. Tripolyphosphate, CS concentrations, and ultrasonication energy were chosen as independent variables after preliminary screening. Particle size (PS), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), and in vitro release were the dependent factors (responses). Prepared NPs were found in the PS range of 198–304 nm with a ZP of 27–42 mV. EE and drug release were in the range of 23–45% and 36–61%, respectively. All of the responses were optimized at the same time using a desirability function based on Design Expert® modeling and a desirability factor of 95%. The minimum inhibitory concentration (MIC) of the improved formula against two bacterial strains, Pseudomonas aeruginosa and Staphylococcus aureus, was determined. The MIC of the optimized NPs was found to be decreased 4-fold compared with pure CHCl. The predicted and observed values for the optimized formulation were nearly identical. The BBD aided in a better understanding of the intrinsic relationship between formulation variables and responses, as well as the optimization of CHCl-loaded CS-NPs in a time- and labor-efficient manner.  相似文献   
29.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
30.
In this study, dendrimer‐encapsulated Cu(Π) nanoparticles immobilized on superparamagnetic Fe3O4@SiO2 nanoparticles were prepared via a multistep‐synthesis. Then, the synthesized composite was fully characterized by various techniques such as fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), dynamic light scattering (DLS), UV‐vis spectroscopy, energy dispersive X‐ray analysis (EDX), thermogravimetric analysis (TGA) and vibration sample magnetometer (VSM). From the information gained by FE‐SEM and TEM studies it can be inferred that the particles are mostly spherical in shape and have an average size of 50 nm. Also, the amount of Cu is determined to be 0.51 mmol/g in the catalyst by inductively coupled plasma (ICP) analyzer. This magnetic nano‐compound has been successfully applied as a highly efficient, magnetically recoverable and stable catalyst for N‐arylation of nitrogen heterocycles with aryl halides (I, Br) and arylboronic acids without using external ligands or additives. The catalyst was also employed in a one‐pot, three‐component reaction for the efficient and green synthesis of 5‐substituted 1H‐tetrazoles using various aldehydes, hydroxylamine hydrochloride and sodium azide in water. The magnetic catalyst can be easily separated by an external magnet bar and is recycled seven times without significant loss of its activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号