首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   972篇
  免费   29篇
  国内免费   7篇
化学   719篇
晶体学   14篇
力学   12篇
数学   49篇
物理学   214篇
  2024年   5篇
  2023年   10篇
  2022年   57篇
  2021年   46篇
  2020年   26篇
  2019年   30篇
  2018年   45篇
  2017年   25篇
  2016年   47篇
  2015年   24篇
  2014年   39篇
  2013年   65篇
  2012年   65篇
  2011年   62篇
  2010年   37篇
  2009年   36篇
  2008年   27篇
  2007年   33篇
  2006年   36篇
  2005年   38篇
  2004年   32篇
  2003年   26篇
  2002年   32篇
  2001年   7篇
  2000年   17篇
  1999年   3篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   16篇
  1991年   6篇
  1990年   7篇
  1989年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   11篇
  1977年   3篇
  1976年   4篇
  1975年   7篇
  1974年   4篇
  1972年   7篇
  1971年   5篇
  1967年   2篇
排序方式: 共有1008条查询结果,搜索用时 125 毫秒
991.
Membrane-less and mediator-free direct electron transfer enzymatic biofuel cells (BFCs) with bioelectrodes comprised of single wall carbon nanotubes (SWNTs) deposited by two methods on porous silicon (pSi) substrates, are reported. In one method the SWNTs were grown by chemical vapor deposition (CVD) and then functionalized with carboxylic groups, and in the second method, pre-synthesized carboxylated SWNTs (c-SWNTs) were electrophoretically deposited on gold-coated pSi. Anodic glucose oxidase (GOx) and cathodic laccase (Lac) were immobilized on the pSi/SWNT substrates to form BFCs in pH 7 phosphate buffer solution. A peak power density of 1.38 μW/cm2 (with a lifetime of 24 h) down to 0.3 μW/cm2 was obtained for a BFC comprised of c-SWNT/enzyme electrodes in 4 mM glucose solution as fuel, corresponding to normal blood sugar concentration, and air as oxidant. BFCs of this relatively simple architecture have the potential for further optimization of power output and lifetime.  相似文献   
992.
Surface-enhanced resonance Raman scattering (SERRS) spectra of aqueous solutions of the triphenylmethane dye methyl green have been obtained for the first time by use of citrate-reduced silver colloids and a laser excitation wavelength of 632.8 nm. Given the highly fluorescent nature of the analyte, which precluded collection of normal Raman spectra of the dye in solution and powdered state, it was highly encouraging that SERRS spectra showed no fluorescence due to quenching by the silver sol. The pH conditions for SERRS were optimised over the pH range 0.5–10 and the biggest enhancement for SERRS of this charged dye was found to be at pH 2.02, thus this condition was used for quantitative analysis. SERRS was found to be highly sensitive and enabled quantitative determination of methyl green over the range 10−9 to 10−7 mol dm−3. Good fits to correlation coefficients were obtained over this range using the areas under the vibrational bands at 1615 and 737 cm−1. Finally, a limit of detection of 83 ppb was calculated, demonstrating the sensitivity of the technique.  相似文献   
993.
In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images. Silica coated ZnO nanoparticles demonstrated a significant inhibition of photocatalytic activity against photodegradation of methylene blue dye in aqueous solution. The effects of silica coating on the UV blocking property of ZnO nanoparticles were also studied.  相似文献   
994.
Plastic has made our lives comfortable as a result of its widespread use in today’s world due to its low cost, longevity, adaptability, light weight and hardness; however, at the same time, it has made our lives miserable due to its non-biodegradable nature, which has resulted in environmental pollution. Therefore, the focus of this research work was on an environmentally friendly process. This research work investigated the decomposition of polypropylene waste using florisil as the catalyst in a salt bath over a temperature range of 350–430 °C. A maximum oil yield of 57.41% was recovered at 410 °C and a 40 min reaction time. The oil collected from the decomposition of polypropylene waste was examined using gas chromatography-mass spectrometry (GC-MS). The kinetic parameters of the reaction process were calculated from thermogravimetric data at temperature program rates of 3, 12, 20 and 30 °C·min−1 using the Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunnose (KAS) equations. The activation energy (Ea) and pre-exponential factor (A) for the thermo-catalytic degradation of polypropylene waste were observed in the range of 102.74–173.08 kJ·mol−1 and 7.1 × 108–9.3 × 1011 min−1 for the OFW method and 99.77–166.28 kJ·mol−1 and 1.1 × 108–5.3 × 1011 min−1 for the KAS method at a percent conversion (α) of 0.1 to 0.9, respectively. Moreover, the fuel properties of the oil were assessed and matched with the ASTM values of diesel, gasoline and kerosene oil. The oil was found to have a close resemblance to the commercial fuel. Therefore, it was concluded that utilizing florisil as the catalyst for the decomposition of waste polypropylene not only lowered the activation energy of the pyrolysis reaction but also upgraded the quantity and quality of the oil.  相似文献   
995.
Antibacterial resistance towards the β-lactam (BL) drugs is now ubiquitous, and there is a major global health concern associated with the emergence of new β-lactamases (BLAs) as the primary cause of resistance. In addition to the development of new antibacterial drugs, β-lactamase inhibition is an alternative modality that can be implemented to tackle this resistance channel. This strategy has successfully revitalized the efficacy of a number of otherwise obsolete BLs since the discovery of the first β-lactamase inhibitor (BLI), clavulanic acid. Over the years, β-lactamase inhibition research has grown, leading to the introduction of new synthetic inhibitors, and a few are currently in clinical trials. Of note, the 1, 6-diazabicyclo [3,2,1]octan-7-one (DBO) scaffold gained the attention of researchers around the world, which finally culminated in the approval of two BLIs, avibactam and relebactam, which can successfully inhibit Ambler class A, C, and D β-lactamases. Boronic acids have shown promise in coping with Ambler class B β-lactamases in recent research, in addition to classes A, C, and D with the clinical use of vaborbactam. This review focuses on the further developments in the synthetic strategies using DBO as well as boronic acid derivatives. In addition, various other potential serine- and metallo- β-lactamases inhibitors that have been developed in last few years are discussed briefly as well. Furthermore, binding interactions of the representative inhibitors have been discussed based on the crystal structure data of inhibitor-enzyme complex, published in the literature.  相似文献   
996.
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97–99% inhibition) at 10–100 ng/mL but was more potent than TAF when compared at molar concentration.  相似文献   
997.
Chrozophora tinctoria is an annual plant of the family Euphorbiaceae, traditionally used as a laxative, a cathartic and an emetic. A methanolic extract of Chrozophora tinctoria (MEC) whole plant and an n-butanol fraction of Chrozophora tinctoria (NBFC) were analyzed by gas chromatography–mass spectrometry (GC-MS) to detect the phytochemicals. MEC and NBFC were tested for in vitro anti acetylcholinesterase (AChE) potential. The effect of both samples on intestinal propulsive movement and spasmolytic activity in the gastrointestinal tract (GIT) was also studied. About twelve compounds in MEC and three compounds in NBFC were tentatively identified through GC-MS. Some of them are compounds with known therapeutic activity, such as toluene; imipramine; undecane; 14-methyl-pentadecanoic acid methyl ester; and hexadecanoic acid. Both NBFC and MEC samples were checked for acute toxicity and were found to be highly toxic in a dose-dependent manner, causing diarrhea and emesis at 1 g/kg concentration in pigeons, with the highest lethargy and mortality above 3 g/kg. Both the samples of Chrozophora tinctoria revealed significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg)-induced constipation. NBFC (81.18 ± 2.5%) and MEC (68.28 ± 2.4%) significantly increased charcoal meal intestinal transit compared to distal water (41.15 ± 4.3%). NBFC exhibited a significant relaxant effect (EC50 = 3.40 ± 0.20 mg/mL) in spontaneous rabbit jejunum as compared to MEC (EC50 = 4.34 ± 0.68 mg/kg). Similarly, the impact of NBFC on KCl-induced contraction was more significant than that of MEC (EC50 values of 7.22 ± 0.06 mg/mL and 7.47 ± 0.57 mg/mL, respectively). The present study scientifically validates the folk use of Chrozophora tinctoria in the management of gastrointestinal diseases such as constipation. Further work is needed to isolate the phytochemicals that act as diarrheal agents in Chrozophora tinctoria.  相似文献   
998.
The multifunctional zinc oxide nanoparticles are synthesized using a cost-effective, efficient, eco-friendly, simple, and clean synthesis approach. Herein, we reported the antibacterial and wound healing potential of zinc oxide nanoparticles (ZnO-NPs) prepared using psyllium gel (PG) as the reducing and stabilizing agent. The PG-mediated zinc oxide nanoparticles (PG-ZnO-NPs) were characterized using UV–Vis, photoluminescence (PL), FTIR, XRD, Raman, and SEM. UV–Vis spectral studies confirmed the surface plasmonic resonance (SPR) band at 364 nm. PL results demonstrated the fluorescent or emission nature of PG-ZnO-NPs. FTIR analysis confirmed characteristic peaks at 873.82 and 619.88 cm−1 due to the tetrahedral coordination of zinc and the formation of the Zn-O bond. XRD and Raman confirm the formation of PG-ZnO-NPs, whereas SEM analysis revealed PG-ZnO-NPs are rod-shaped, having hexagonal prism-like bases, and EDX exhibited the elemental composition of PG-ZnO-NPs. The as-synthesized PG-ZnO-NPs possessed prominent microbicidal potential against gram-positive (Bacillus subtilis and Bacillus licheniformis) and gram-negative (Escherichia coli and Salmonella shigella) bacterial strains in terms of zone of inhibition (ZOI), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). In vivo biological investigations with mice show that the synthesized PG-ZnO-NPs possess outstanding biocompatibility and wound healing potential. PG-ZnO-NPs dressing significantly speeds up full-thickness wound repair by triggering a decrease in MMP-1 and MMP-2 and escalating the mRNA levels of collagen types (I & III) and fibronectin. Thus, our work validates that the inclusion of PG-ZnO-NPs in dressing shows excellent potential for acute wound management.  相似文献   
999.
1000.
Journal of Solid State Electrochemistry - A hybrid supercapacitor, also known as a supercapattery, combines the high power density of supercapacitors with the high energy density of batteries. In...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号