首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  国内免费   1篇
化学   61篇
物理学   3篇
  2023年   1篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有64条查询结果,搜索用时 46 毫秒
31.
Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition.  相似文献   
32.
A new heterodinuclear Fe(III)Zn(II) complex which mimics the active site of the hydrolytic enzyme red kidney bean purple acid phosphatase was synthesized and characterized by IR, CHN and X-ray crystallographic analyses. This complex, [FeIIIZnII(μ-OH)bpbpmp-CH3](ClO4)2, containing the ligand (H2bpbpmp-CH3 = {2-[bis(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxy-5-methylbenzyl) (2-pyridyl-methyl) aminomethyl]-4-methyl-phenol}) was employed in the construction of a biomimetic sensor and used in the determination of rosmarinic acid in plant extract samples. The response parameters and optimization of the biomimetic sensor design were evaluated. The best performance of this sensor was obtained for 75:15:10% (w/w/w) of the graphite powder:nujol:Fe(III)Zn(II) complex, 0.1 mol L−1 phosphate buffer solution (pH 7.5), 1.19 × 10−4 mol L−1 hydrogen peroxide with frequency, pulse amplitude, and scan increment at 30 Hz, 100 mV, and 0.6 mV, respectively. The rosmarinic acid concentration was linear in the range of 2.98 × 10−5 to 3.83 × 10−4 mol L−1 (r = 0.9991) with a detection limit of 2.30 × 10−6 mol L−1. This biomimetic sensor demonstrated long-term stability (300 days; 900 determinations) and reproducibility, with a relative standard deviation of 12.0%. The recovery study of rosmarinic acid in plant extract samples gave values from 90.3 to 98.3% and the concentrations determined showed agreement when compared with those obtained using capillary electrophoresis at the 95% confidence level.  相似文献   
33.
34.
Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm− 2. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg− 1 B, 3.0 mg kg− 1 Cu, 3.6 mg kg− 1 Fe, 1.8 mg kg− 1 Mn and 1.2 mg kg− 1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.  相似文献   
35.
A state‐of‐the‐art overview of N‐dopant characterizations in nano‐TiO2 second‐generation photocatalysts is provided. The related literature is very rich and sometimes offers contrasting interpretations. Here we critically discuss up‐to‐date literature results and our own findings, as retrieved by several experimental (BET, HR‐TEM, XPS, DRS, HR‐XRPD, EXAFS, electrochemical tools) and theoretical (periodic DFT) techniques. Our intent is to pull together outcomes from very different and complementary sources to make an as much as possible coherent picture of the morphological, electrochemical and electronic properties of N‐TiO2 materials. It is commonly accepted that critical issues to be considered in the design of high‐performing N‐TiO2 photocatalysts are synthetic strategy, defect concentration and chemical nature of the lattice point defects. We focus on the latter two issues, with emphasis on sol‐gel prepared materials, according to the specific area of expertise of our group. The problem of the chemical nature of guest N species into the lattice is crucial, as substitutional (Ns) or interstitial (Ni) nitrogen place their valence states just above the valence band or deeper into the band gap. Overall, we show how synergism among experimental and theoretical techniques is decisive to disentangle structural, electronic and morphological effects in complex N‐doped TiO2 matrices.  相似文献   
36.
Journal of Thermal Analysis and Calorimetry - In this paper, the application of a temperature modulation to the temperature-resolved FTIR analysis is reported. The advantage offered by the...  相似文献   
37.
HPLC separations of an unknown sample mixture and a pharmaceutical formulation have been optimized using a recently developed chemometric methodology proposed by W. Dewé et al. in 2004 and improved by P. Lebrun et al. in 2008. This methodology is based on experimental designs which are used to model retention times of compounds of interest. Then, the prediction accuracy and the optimal separation robustness, including the uncertainty study, were evaluated. Finally, the design space (ICH Q8(R1) guideline) was computed as the probability for a criterion to lie in a selected range of acceptance. Furthermore, the chromatograms were automatically read. Peak detection and peak matching were carried out with a previously developed methodology using independent component analysis published by B. Debrus et al. in 2009. The present successful applications strengthen the high potential of these methodologies for the automated development of chromatographic methods.  相似文献   
38.
Monomer free hydrogel nanoparticles (nanogels) were prepared by crosslinking preformed poly(N-vinyl-2-pyrrolidone) (PVP) entrapped in the aqueous pool of hexadecyltrimethylammonium bromide reverse micelles using the Fenton reaction. The PVP nanoparticles were spherical with a dry diameter of 27 nm. The diameter of the swollen particles was ten times higher, i.e., a swelling ratio, Q, above 900, characterizing this preparation as superabsorbent. PVP nanogel swelling was dependent on bound Fe3+ and varied with pH and ionic strength. Nanogel deswelling by salt followed the anions lyotropic series, i.e., . The value of Q reached 6,000 in iron-free PVP nanoparticles at low pH, making this nanogel one of the most efficient swelling systems so far described.  相似文献   
39.
The preferential adsorption coefficient, lambda, of poly(methyl methacrylate), PMMA, in solutions formed by an epoxy resin in tetrahydrofuran (THF), was studied by size-exclusion chromatography (SEC). Only PMMA of lowest molar mass was preferentially solvated by epoxy but at low concentrations of epoxy in the mixture. At higher epoxy content PMMA was preferentially solvated by THF. A simultaneous and competitive solvation between the specific interactions PMMA-epoxy and the self association of epoxy at high concentrations would be the responsible of this inversion point. The more compacted coil of PMMA of higher molecular weights in solution could explain the lack of interaction of these polymers with epoxy. The results also indicated that lambda decreased with the molar mass. This variation has been attributed to the influence of the coil segment density on preferential adsorption.  相似文献   
40.
Stable sols of TiO2 were synthesized by a non-aqueous sol–gel process using titanium (IV) isopropoxide as precursor. The microstructure, optical and morphological properties of the films obtained by spin-coating from the sol, and annealed at different temperatures, were investigated using scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy and ellipsometry. The crystalline structure of the films was characterized by X-ray diffraction and their photocatalytic activity was evaluated for the oxidation of ethanol in air. The influence of the calcination temperature, pre-heat treatment and the number of layers was studied. Simultaneous thermo-gravimetric and differential thermal analysis measurements were carried out to ascertain the thermal decomposition behavior of the precursors. In order to obtain a higher photoresponse in the visible region, a series of vanadium-, niobium- and tantalum-doped TiO2 catalysts was synthesized by the same sol–gel method. For V doping two different precursors, a vanadium alkoxide and V2O5, were used. The effect on the crystallization and photocatalytic activity of the doped TiO2 films was investigated. Furthermore, to identify the effective composition of the samples, they were characterized by X-ray photoelectron spectroscopy and the surface area of the powders was measured by N2 adsorption. The 10 wt.% doped catalysts exhibit high photocatalytic activity under visible light and among them the best performance was obtained for the sample containing Ta as dopant. The crystallite sizes are closely related to the photocatalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号