首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1329篇
  免费   55篇
  国内免费   2篇
化学   954篇
晶体学   43篇
力学   45篇
数学   123篇
物理学   221篇
  2023年   11篇
  2022年   14篇
  2021年   14篇
  2020年   24篇
  2019年   23篇
  2018年   20篇
  2017年   18篇
  2016年   33篇
  2015年   35篇
  2014年   43篇
  2013年   75篇
  2012年   73篇
  2011年   78篇
  2010年   52篇
  2009年   60篇
  2008年   93篇
  2007年   81篇
  2006年   86篇
  2005年   57篇
  2004年   62篇
  2003年   53篇
  2002年   70篇
  2001年   30篇
  2000年   22篇
  1999年   16篇
  1998年   12篇
  1997年   16篇
  1996年   17篇
  1995年   13篇
  1994年   14篇
  1993年   14篇
  1992年   5篇
  1991年   11篇
  1989年   8篇
  1988年   13篇
  1987年   10篇
  1986年   5篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   11篇
  1981年   7篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   5篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
  1969年   5篇
排序方式: 共有1386条查询结果,搜索用时 0 毫秒
51.
Drug discovery efforts rely increasingly on the identification of quality lead compounds through high-throughput synthesis and screening. However, large-scale random libraries have yielded only a low number of quality lead molecules. To address this shortcoming researchers have paid more attention to the concept of "drug-likeness" of molecules in combinatorial and screening libraries. Database profiling and analysis methods have been employed to identify the structural features of known drug molecules. Neural networks and machine learning methods help to distinguish between drugs and nondrugs. More recently, database-independent pharmacophore filters have been introduced that provide simple intuitive rules to classify potential drugs.  相似文献   
52.
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross-coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross-coupling partners without the need of co-catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.  相似文献   
53.
By reaction of KC(2)H and K(2)Zn(CN)(4) in liquid ammonia, the diammoniate K(2)Zn(C(2)H)(4).2NH(3) was obtained. K(2)Cd(C(2)H)(4).2NH(3) was synthesized by reacting KC(2)H, Cd(NH(2))(2), and acetylene in liquid ammonia. The crystal structures of the air and temperature sensitive compounds were determined by X-ray single crystal diffraction at low temperatures (T = 170 K). Both compounds crystallize in the monoclinic space group I2/a (No. 15) with Z = 4. K(2)Zn(C(2)H)(4).2NH(3): a = 7.289(1) A, b = 12.765(2) A, c = 14.066(2) A, beta = 98.11(2) degrees. K(2)Cd(C(2)H)(4).2NH(3): a = 7.444(1) A, b = 12.619(3) A, c = 14.304(2) A, beta = 98.94(1) degrees. Characteristic structural motifs are tetrahedral [M(C(2)H)(4)](2-) fragments (M = Zn, Cd) and zigzag chains of edge sharing distorted (C(2)H)(6) octahedra centered by potassium ions. These zigzag chains are connected by a second type of crystallographically distinct potassium ions that also bind to two ammonia molecules.  相似文献   
54.
Novel Neutral and Cationic Mono‐Aziridine Complexes of the Type [CpMn(CO)2Az], [CpCr(NO)2Az]+, and [(Ph3P)(CO)4ReAz]+ via CO‐, Hydride‐, and Chloride‐Elimination Reactions The monoaziridine complexes 1 — 5 are obtained by three differently induced substitution reactions. The photolytically induced CO substitution reaction of [CpMn(CO)3] with 2, 2‐dimethylaziridine leads to the neutral N‐coordinate aziridine complex [Cp(CO)2Mn{$\overline{N(H)CMe2C}$ H2}] ( 1 ). The protonation of [(Ph3P)(CO)4ReH] with CF3SO3H and consecutive treatment with 2, 2‐dimethylaziridine or 2‐ethylaziridine gives the salt‐like aziridine complexes [(Ph3P)(CO)4Re{$\overline{N(H)CMe2C}$ H2}](CF3SO3) ( 2 ) or [(Ph3P)(CO)4Re{ H2}](CF3SO3) ( 3 ) by hydride elimination reactions. The like‐wise salt‐like complexes [Cp(NO)2Cr{$\overline{N(H)CMe2C}$ H2}](BF4) ( 4 ) and [Cp(NO)2Cr{ H2}](CF3SO3) ( 5 ) are synthesized from [CpCr(NO)2Cl] by chloride elimination with AgX (X = BF4, CF3SO3) in the presence of 2, 2‐dimethylaziridine or 2‐ethylaziridine, respectively. As a result of X‐ray structure analyses, the metal atoms are trigonal pyramidally ( 1, 4, 5 ) or octahedrally ( 2, 3 , cis‐position) configurated; the intact three‐membered rings coordinate through the distorted tetrahedrally configurated N atoms. All compounds 1‐5 are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes; the IR, 1H‐ and 13C{1H}‐NMR, and MS spectra are reported and discussed.  相似文献   
55.
In analogy to our successful "PX2+" insertion reactions, an "AsX2+" insertion route was explored to obtain new arsenic halogen cations. Two new salts were prepared: AsBr4+[Al(OR)4]-, starting from AsBr3, Br2 and Ag[Al(OR)4], and I2As-PI3+[Al(OR)]4 from AsI3, PI3 and Ag[Al(OR)4](R=C(CF3)3). The first cation is formally a product of an "AsBr2+" insertion into the Br2 molecule and the latter clearly a "PI2+" insertion into the As-I bond of the AsI3 molecule. Both compounds were characterized by IR and NMR spectroscopy, the first also by its X-ray structure. Reactions of Ag[Al(OR)4] with AsI3 do not lead to ionization and AgI formation but rather lead to a marginally stable Ag(AsI3)2+[Al(OR)]4 salt. Despite many attempts we failed to prepare other PX-cation analogues such as AsI4+, As2X5+ and P4AsX2+(X=Br, I). To explain these negative results the thermodynamics of the formation of EX2+, EX4+ and E2X5+(E = As, P; X = Br, I) was carefully analyzed with MP2/TZVPP calculations and inclusion of entropy and solvation effects. We show that As2Br5+ is in very rapid equilibrium with AsBr2+ and AsBr3(DeltaGo((CH2Cl2))=+30 kJ mol(-1)). The extremely reactive AsBr2+ cation available in the equilibrium accounts for the observed decomposition of the [Al(OR)4]- anion. By contrast, the stability of AsI3 against Ag[Al(OR)4] appears to be kinetic and, if prepared by a suitable route, As2I5+ would be expected to have a stability intermediate between the known P2I5+ and P2Br5+.  相似文献   
56.
Sodium and lithium cobaltates are important materials for thermoelectric and battery applications due to their large thermoelectric power and ability to (de-) intercalate the alkali metal. For these applications, phase pure materials with controlled microstructure are required. We report on the sol?Cgel synthesis of sodium- and lithium-based materials by using acetate precursors. The produced Na2/3CoO2, Li(Ni1/3Mn1/3Co1/3)O2, and Li(Ni1/2Co1/2)O2 powders are phase pure with grain sizes below 1???m. X-ray diffraction and energy-dispersive spectral analyses show that the cation stoichiometry is preserved in the lithium-based compounds. Despite the low temperatures, the sodium content is reduced by 1/3 as compared to the initial value. Chemical phases of the investigated powders are formed in the sol?Cgel route at temperatures typically 100?C200?K lower than those used in the conventional solid-state synthesis of these materials. The suggested sol?Cgel synthesis is a low temperature process suited for production of phase pure and homogeneous materials with volatile cations.  相似文献   
57.
Studies on the Anode/Electrolyte Interfacein Lithium Ion Batteries   总被引:1,自引:0,他引:1  
Summary.  Rechargeable lithium ion cells operate at voltages of 3.5–4.5 V, which is far beyond the thermodynamic stability window of the battery electrolyte. Strong electrolyte reduction and anode corrosion has to be anticipated, leading to irreversible loss of electroactive material and electrolyte and thus strongly deteriorating cell performance. To minimize these reactions, anode and electrolyte components have to be combined that induce the electrolyte reduction products to form an effectively protecting film at the anode/electrolyte interface, which hinders further electrolyte decomposition reactions, but acts as membrane for the lithium cations, i.e. behaving as a solid electrolyte interphase (SEI). This paper focuses on important aspects of the SEI. By using key examples, the effects of film forming electrolyte additives and the change of the active anode material from carbons to lithium storage alloys are highlighted. Received May 30, 2000. Accepted June 14, 2000  相似文献   
58.
Several, partly new, ionic liquids (ILs) containing imidazolium and ammonium cations as well as the medium‐sized [NTf2]? (0.230 nm3; Tf=CF3SO3?) and the large [Al(hfip)4]? (0.581 nm3; hfip=OC(H)(CF3)2) anions were synthesized and characterized. Their temperature‐dependent viscosities and conductivities between 25 and 80 °C showed typical Vogel–Fulcher–Tammann (VFT) behavior. Ion‐specific self‐diffusion constants were measured at room temperature by pulsed‐gradient stimulated‐echo (PGSTE) NMR experiments. In general, self‐diffusion constants of both cations and anions in [Al(hfip)4]?‐based ILs were higher than in [NTf2]?‐based ILs. Ionicities were calculated from self‐diffusion constants and measured bulk conductivities, and showed that [Al(hfip)4]?‐based ILs yield higher ionicities than their [NTf2]? analogues, the former of which reach values of virtually 100 % in some cases.From these observations it was concluded that [Al(hfip)4]?‐based ILs come close to systems without any interactions, and this hypothesis is underlined with a Hirshfeld analysis. Additionally, a robust, modified Marcus theory quantitatively accounted for the differences between the two anions and yielded a minimum of the activation energy for ion movement at an anion diameter of slightly greater than 1 nm, which fits almost perfectly the size of [Al(hfip)4]?. Shallow Coulomb potential wells are responsible for the high mobility of ILs with such anions.  相似文献   
59.
The photoionization and dissociative photoionization of 1,4‐di‐tert‐butyl‐1,4‐azaborinine by means of synchrotron radiation and threshold photoelectron photoion coincidence spectroscopy is reported. The ionization energy of the compound was determined to be 7.89 eV. Several low‐lying electronically excited states in the cation were identified. The various pathways for dissociative photoionization were modeled by statistical theory, and appearance energies AE0K were obtained. The loss of isobutene in a retro‐hydroboration reaction is the dominant pathway, which proceeds with a reverse barrier. Pyrolysis of the parent compound in a chemical reactor leads to the generation of several yet unobserved boron compounds. The ionization energies of the C4H6BN isomers 1,2‐ and 1,4‐dihydro‐1,4‐azaborinine and the C3H6BN isomer 1,2‐dihydro‐1,3‐azaborole were determined from threshold photoelectron spectra.  相似文献   
60.
A monoclinic lithium vanadium phosphate (Li3V2(PO4)3) and carbon composite thin film (LVP/C) is prepared via electrostatic spray deposition. The film is studied with X-ray diffraction, scanning and transmission electron microscopy and galvanostatic cell cycling. The LVP/C film is composed of carbon-coated Li3V2(PO4)3 nanoparticles (50 nm) that are well distributed in a carbon matrix. In the voltage range of 3.0–4.3 V, it exhibits a reversible capacity of 118 mA h g?1 and good capacity retention at the current rate of 1 C, while delivers 80 mA h g?1 at 24 C. These results suggest a practical strategy to develop new cathode materials for high power lithium-ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号