首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   23篇
  国内免费   1篇
化学   534篇
晶体学   31篇
力学   3篇
数学   92篇
物理学   180篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   5篇
  2017年   7篇
  2016年   16篇
  2015年   14篇
  2014年   30篇
  2013年   27篇
  2012年   26篇
  2011年   39篇
  2010年   25篇
  2009年   26篇
  2008年   30篇
  2007年   29篇
  2006年   29篇
  2005年   35篇
  2004年   17篇
  2003年   23篇
  2002年   18篇
  2001年   21篇
  2000年   15篇
  1999年   10篇
  1998年   19篇
  1997年   10篇
  1996年   14篇
  1995年   24篇
  1994年   20篇
  1993年   11篇
  1992年   14篇
  1991年   14篇
  1990年   14篇
  1989年   13篇
  1988年   11篇
  1987年   7篇
  1986年   14篇
  1985年   16篇
  1984年   16篇
  1983年   10篇
  1982年   12篇
  1981年   11篇
  1980年   11篇
  1979年   14篇
  1977年   5篇
  1975年   6篇
  1972年   6篇
  1970年   7篇
  1968年   4篇
  1966年   7篇
  1931年   4篇
排序方式: 共有840条查询结果,搜索用时 0 毫秒
71.
72.
A combined synchrotron X‐ray and density functional theory (DFT) study on the structure of a Jäger‐type N2O2 chelate complex was carried out. The ethoxy‐substituted bis(3‐oxo‐enaminato)cobalt(II) complex ( 1 ) was an original sample from the laboratory of the late Professor Ernst‐G. Jäger (University of Jena, Germany). Single‐crystal X‐ray analysis revealed essentially flat molecules of 1 , which are unsolvated and coordinatively unsaturated. The DFT calculations on the isolated molecule predict a planar structure for the non‐hydrogen atoms, which is a local minimum on the energy surface. The crystal packing is achieved through off‐set stacking (staircase arrangement), resulting in a herringbone pattern in the space group P212121. The structure of 1 is compared to known structures of related bis(3‐oxo‐enaminato)cobalt(II) complexes ( 2 – 4 ). Original bulk material of 1 was investigated by scanning electron microscopy (SEM), powder X‐ray diffraction (PXRD), melting point determination, and infrared (IR) spectroscopy.  相似文献   
73.
The structure of ammonium hydrogensquarate squaric acid monohydrate has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group C2/c and exhibits a 3D network with molecules linked by intermolecular interactions with participation of the H2Sq, HSq?, NH4 +, and H2O species. The HSq? anion and the neutral H2Sq form a strong head-to-tail dimer through O–H···O hydrogen bonding with lengths of 2.587 and 2.494 Å (protected space between numeral and unit). The layers are connected by ammonium cations and water molecules in a plane through the O···N (2.950, 2.978, 3.036 Å) and O···O (2.953, 2.781 Å) bonds. Another such layer is connected to the NH4 + cation in the adjacent plane through bifurcated N–H···O hydrogen-bonding to form a double layer (NH···O bond lengths are 3.036, 2.978, 2.857, 2.909, 2.958, and 2.742 Å, respectively). The IR-band assignment of the compound was achieved using the polarized IR-spectroscopy of oriented colloids in a nematic host. Theoretical ab initio calculations were performed and achieved with a view to explain the IR-bands of the H2Sq.HSq? motif.  相似文献   
74.
75.
Attempts to crystal engineer metallosupramolecularcomplexes from Cu(phen)2+ building blocks and the prototypical,rod‐like, exo‐bidentate ligand 4,4′‐bipyridine (4,4′‐bipy) by layering techniques are described. Reactions of Cu(phen)2+ (phen = 1,10‐phenanthroline) with 4,4′‐bipy in the presence of NO3 counterions yielded two distinct, discrete, dinuclear, Ci symmetric, dumbbell‐typecomplexes, [{Cu(NO3)2(phen)}2(4,4′‐bipy)] ( 1 ) and [{Cu(NO3)(phen)(H2O)}2(4,4′‐bipy)](NO3)2 ( 2 ), depending upon the mixture of solvents used for crystallization. In compound 1 , a mono‐ and a bidentate nitrato group coordinate to Cu2+, whereas in 2 the monodentate nitrato groups are replaced by aqua ligands, which introduce additional hydrogen‐bond donor functionality to the molecule. The crystal structure of 1 was determined by single‐crystal X‐ray analysis at 296 and 110 K. Upon cooling, a disorder‐order transition occurs, with retention of the space group symmetry. The crystal structure of 2 at room temperature was reported previously [Z.‐X. Du, J.‐X. Li, Acta Cryst. 2007 , E63, m2282]. We have redetermined the crystal structure of 2 at 100 K. A phase transition is not observed for 2 , but the low temperature single‐crystal structure determination is of significantly higher precision than the room temperature study. Both 1 and 2 are obtained phase‐pure, as proven by powder X‐ray diffraction of the bulk materials. Crystals of [Cu(phen)(CF3SO3)2(4,4′‐bipy) · 0.5H2O]n ( 3 ), a one‐dimensional coordination polymer, were obtained from [Cu(CF3SO3)2(phen)(H2O)2] and 4,4′‐bipy. In 3 , Cu(phen)2+ corner units are joined by 4,4′‐bipy via the two vacant cis sites to form polymeric zig‐zag chains, which are tightly packed in the crystal. Compounds 1 – 3 were further studied by infrared spectroscopy.  相似文献   
76.
The reactions of heteroleptic GaCp*/CO containing transition metal complexes of iron and cobalt, namely [(CO)(3)M(μ(2)-GaCp*)(m)M(CO)(3)] (Cp* = pentamethylcyclopentadienyl; M = Fe, m = 3; M = Co, m = 2) and [Fe(CO)(4)(GaCp*)], with ZnMe(2) in toluene and the presence of a coordinating co-solvent were investigated. The reaction of the iron complex [Fe(CO)(4)(GaCp*)] with ZnMe(2) in presence of tetrahydrofurane (thf) leads to the dimeric compound [(CO)(4)Fe{μ(2)-Zn(thf)(2)}(2)Fe(CO)(4)] (1). Reaction of [(CO)(3)Fe(μ(2)-GaCp*(3))Fe(CO)(3)] with ZnMe(2) and stoichiometric amounts of thf leads to the formation of [(CO)(3)Fe{μ(2)-Zn(thf)(2)}(2)(μ(2)-ZnMe)(2)Fe(CO)(3)] (2) containing {Zn(thf)(2)} as well as ZnMe ligands. Using pyridine (py) instead of thf leads to [(CO)(3)Fe{μ(2)-Zn(py)(2)}(3)Fe(CO)(3)] (3) via replacement of all GaCp* ligands by three{Zn(py)(2)} groups. In contrast, reaction of [(CO)(3)Co(μ(2)-GaCp*)(2)Co(CO)(3)] with ZnMe(2) in the presence of py or thf leads in both cases to the formation of [(CO)(3)Co{μ(2)-ZnL(2)}(μ(2)-ZnCp*)(2)Co(CO)(3)] (L = py (4), thf (5)) via replacement of GaCp* with {Zn(L)(2)} units as well as Cp* transfer from the gallium to the zinc centre. All compounds were characterised by NMR spectroscopy, IR spectroscopy, single crystal X-ray diffraction and elemental analysis.  相似文献   
77.
The synthesis, structural characterization, and bonding situation analysis of a novel, all-zinc, hepta-coordinated palladium complex [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) is reported. The reaction of the substitution labile d(10) metal starting complex [Pd(CH(3))(2)(tmeda)] (tmeda = N,N,N',N'-tetramethyl-ethane-1,2-diamine) with stoichiometric amounts of [Zn(2)Cp*(2)] (Cp* = pentamethylcyclopentadienyl) results in the formation of [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) in 35% yield. Compound 1 has been fully characterized by single-crystal X-ray diffraction, (1)H and (13)C NMR spectroscopy, IR spectroscopy, and liquid injection field desorption ionization mass spectrometry. It consists of an unusual [PdZn(7)] metal core and exhibits a terminal {Zn(tmeda)} unit. The bonding situation of 1 with respect to the properties of the three different types of Zn ligands Zn(R,L) (R = CH(3), Cp*; L = tmeda) bonded to the Pd center was studied by density functional theory quantum chemical calculations. The results of energy decomposition and atoms in molecules analysis clearly point out significant differences according to R vs L. While Zn(CH(3)) and ZnCp* can be viewed as 1e donor Zn(I) ligands, {Zn(tmeda)} is best described as a strong 2e Zn(0) donor ligand. Thus, the 18 valence electron complex 1 nicely fits to the family of metal-rich molecules of the general formula [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; M = Mo, Ru, Rh; Ni, Pd, Pt; R = Me, Et, Cp*).  相似文献   
78.
The gallides SrRh2Ga2, SrIr2Ga2, and Sr3Rh4Ga4 were obtained from the elements by induction melting and subsequent annealing. They were investigated by powder and single‐crystal X‐ray diffraction: CaRh2B2 type, Fddd, a = 573.2(1), b = 1051.3(1), c = 1343.7(2) pm, wR2 = 0.0218, 398 F2 values, 15 variables for SrRh2Ga2; a = 576.0(1), b = 1045.5(1), c = 1350.6(3) pm for SrIr2Ga2, and Na3Pt4Ge4 type, I$\bar{4}$ 3m, a = 777.4(2) pm, wR2 = 0.0234, 190 F2 values, 11 variables for Sr3Ir4Ga4. The gallides SrRh2Ga2 and Sr3Ir4Ga4 exhibit complex, covalently bonded three‐dimensional [Rh2Ga2] and [Ir4Ga4] networks with short Rh–Ga (241–246 pm) and Ir–Ga (243–259 pm) distances. The strontium atoms fill large cages within these networks. They are coordinated by 8 Rh + 10 Ga in SrRh2Ga2 and by 4 Ir + 8 Ga in Sr3Ir4Ga4. The structure of SrRh2Ga2 is discussed along with the monoclinic distortion variants HoNi2B2 and BaPt2Ga2 on the basis of a group‐subgroup scheme.  相似文献   
79.
80.
Carbophilic catalysts that are based on AuI allow a host of different nucleophiles to be added across various π systems. 1 – 3 Although many of these reactions are thought to proceed via gold carbenoids, the challenge to observe and characterize these putative intermediates has basically been unmet. 4 The current mechanistic interpretation therefore largely relies on indirect evidence and computational data, some of which are subject to debate. 5 In an attempt to fill this gap, we pursued a potential route to gold carbenoids by formal transmetalation of chromium or tungsten Fischer carbene complexes with [LAu]+. Whereas this transformation proceeds with exceptional ease as long as a stabilizing heteroelement is present on the carbene center, it stops half‐way in its absence. Rather unusual bimetallic arrays are formed, which allow the charge density to delocalize over several positions. The obvious difficulty of releasing an “unstabilized” gold carbenoid has potential mechanistic implications for the understanding of π‐acid catalysis in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号