首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   16篇
化学   368篇
晶体学   1篇
力学   3篇
数学   28篇
物理学   45篇
  2024年   2篇
  2022年   15篇
  2021年   13篇
  2020年   10篇
  2019年   9篇
  2018年   4篇
  2017年   8篇
  2016年   8篇
  2015年   12篇
  2014年   15篇
  2013年   30篇
  2012年   35篇
  2011年   32篇
  2010年   27篇
  2009年   12篇
  2008年   23篇
  2007年   17篇
  2006年   19篇
  2005年   13篇
  2004年   22篇
  2003年   19篇
  2002年   14篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   8篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1961年   1篇
  1936年   1篇
排序方式: 共有445条查询结果,搜索用时 31 毫秒
31.
A novel catalyst material for the selective dehydrogenation of propane is presented. The catalyst consists of 1000 ppm Pt, 3 wt % Ga, and 0.25 wt % K supported on alumina. We observed a synergy between Ga and Pt, resulting in a highly active and stable catalyst. Additionally, we propose a bifunctional active phase, in which coordinately unsaturated Ga3+ species are the active species and where Pt functions as a promoter.  相似文献   
32.
An amperometric biosensor for oganophosphorus (OP) pesticides based on a carbon nanotube (CNT)-modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 μM paraoxon and 0.8 μM methyl parathion with sensitivities of 25 and 6 nA/μM, respectively.  相似文献   
33.
3-MCPD in food other than soy sauce or hydrolysed vegetable protein (HVP)   总被引:3,自引:0,他引:3  
This review gives an overview of current knowledge about 3-monochloropropane-1,2-diol (3-MCPD) formation and detection. Although 3-MCPD is often mentioned with regard to soy sauce and acid-hydrolysed vegetable protein (HVP), and much research has been done in that area, the emphasis here is placed on other foods. This contaminant can be found in a great variety of foodstuffs and is difficult to avoid in our daily nutrition. Despite its low concentration in most foods, its carcinogenic properties are of general concern. Its formation is a multivariate problem influenced by factors such as heat, moisture and sugar/lipid content, depending on the type of food and respective processing employed. Understanding the formation of this contaminant in food is fundamental to not only preventing or reducing it, but also developing efficient analytical methods of detecting it. Considering the differences between 3-MCPD-containing foods, and the need to test for the contaminant at different levels of food processing, one would expect a variety of analytical approaches. In this review, an attempt is made to provide an up-to-date list of available analytical methods and to highlight the differences among these techniques. Finally, the emergence of 3-MCPD esters and analytical techniques for them are also discussed here, although they are not the main focus of this review.  相似文献   
34.
The incorporation of noble gas atoms, in particular neon, into the pores of network structures is very challenging due to the weak interactions they experience with the network solid. Using high‐pressure single‐crystal X‐ray diffraction, we demonstrate that neon atoms enter into the extended network of ammonium metal formates, thus forming compounds Nex[NH4][M(HCOO)3]. This phenomenon modifies the compressional and structural behaviours of the ammonium metal formates under pressure. The neon atoms can be clearly localised within the centre of [M(HCOO)3]5 cages and the total saturation of this site is achieved after ~1.5 GPa. We find that by using argon as the pressure‐transmitting medium, the inclusion inside [NH4][M(HCOO)3] is inhibited due to the larger size of the argon. This study illustrates the size selectivity of [NH4][M(HCOO)3] compounds between neon and argon insertion under pressure, and the effect of inclusion on the high‐pressure behaviour of neon‐bearing ammonium metal formates.  相似文献   
35.
36.
37.
Since January 2009, the list of prohibited substances and methods of doping as established by the World Anti-Doping Agency includes new therapeutics such as the peroxisome-proliferator-activated receptor (PPAR)-delta agonist GW1516, which is categorized as a gene doping substance. GW1516 has completed phase II and IV clinical trials regarding dyslipidemia and the regulation of the lipoprotein transport in metabolic syndrome conditions; however, its potential to also improve athletic performance due to the upregulation of genes associated with oxidative metabolism and a modified substrate preference that shifted from carbohydrate to lipid consumption has led to a ban of this compound in elite sport. In a recent report, two presumably mono-oxygenated and bisoxygenated urinary metabolites of GW1516 were presented, which could serve as target analytes for doping control purposes after full characterization. Hence, in the present study, phase I metabolism was simulated by in vitro assays employing human liver microsomal fractions yielding the same oxygenation products, followed by chemical synthesis of the assumed structures of the two abundant metabolic reaction products. These allowed the identification and characterization of mono-oxygenated and bisoxygenated metabolites (sulfoxide and sulfone, respectively) as supported by high-resolution/high-accuracy mass spectrometry with higher-energy collision-induced dissociation, tandem mass spectrometry, and nuclear magnetic resonance spectroscopy. Since urine samples have been the preferred matrix for doping control purposes, a method to detect the new target GW1516 in sports drug testing samples was developed in accordance to conventional screening procedures based on enzymatic hydrolysis and liquid–liquid extraction followed by liquid chromatography, electrospray ionization, and tandem mass spectrometry. Validation was performed for specificity, limit of detection (0.1 ng/ml), recovery (72%), intraday and interday precisions (7.7–15.1%), and ion suppression/enhancement effects (<10%).  相似文献   
38.
Conductance measurements of lithium picrate in solutions of water in n-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol and 3-methyl-1-butanol have been carried out at 25°C. Ionic association and conductance were found to change with water content and with the molecular structure of the alcohols (i.e. position of the OH group and degree of branching of the alkyl chain). These results indicate that both conductance and ion pair formation are not the consequence of the simple motion of ions in the electrical field as required by the continuum model. A more realistic approach, involving the internal structure of the solvent mixtures, has been considered.  相似文献   
39.
40.
Is there anything resembling a truly noncoordinating anion? Would it not be great to be able to prepare any crazy, beautiful, or simply useful cationic species that one has in mind, or has detected by mass spectroscopy? In condensed phases the target cation has to be partnered with a suitable counteranion. This is the moment when difficulties arise and many wonderful ideas end in the sink owing to coordination or decomposition of the anion. However, maybe these counteranion problems can be overcome by one of the new weakly coordinating anions (WCAs). Herein is an overview on the available candidates in the quest for the least coordinating anion and a summary of new applications, available starting materials, and general strategies to introduce a WCA into a system. Some of the unusual properties of WCA salts such as high solubility in low dielectric media, pseudo gas‐phase conditions in condensed phases, and the stabilization of weakly bound and low‐charged complexes are rationalized on thermodynamic grounds. Limits of the WCAs, that is, anion coordination and decomposition, are shown and a quantum chemical analysis of all types of WCAs is presented which allows the choice of a particular WCA to be based on quantative data from a wide range of different anions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号