全文获取类型
收费全文 | 183篇 |
免费 | 2篇 |
专业分类
化学 | 122篇 |
晶体学 | 3篇 |
力学 | 6篇 |
数学 | 10篇 |
物理学 | 44篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 8篇 |
2021年 | 7篇 |
2020年 | 5篇 |
2019年 | 5篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2016年 | 5篇 |
2015年 | 2篇 |
2013年 | 17篇 |
2012年 | 14篇 |
2011年 | 12篇 |
2010年 | 17篇 |
2009年 | 7篇 |
2008年 | 12篇 |
2007年 | 12篇 |
2006年 | 8篇 |
2005年 | 10篇 |
2004年 | 6篇 |
2003年 | 2篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有185条查询结果,搜索用时 46 毫秒
31.
Banerjee I Mondal D Martin J Kane RS 《Langmuir : the ACS journal of surfaces and colloids》2010,26(22):17369-17374
We report the design of antimicrobial nanocomposite films based on conjugates of multiwalled carbon nanotubes (MWNT) and protoporphyrin IX (PPIX) that are highly effective against Staphylococcus aureus (S. aureus) upon irradiation with visible light. S. aureus infections can lead to life-threatening situations, especially when caused by antibiotic-resistant strains. While the light-activated antimicrobial activity of porphyrins against such pathogens is well-known, a facile way to incorporate porphyrins into coatings may lead to their more effective use. To that end, we decided to synthesize and characterize MWNT-PPIX conjugates which combine the biocidal capacity of porphyrins with the mechanical strength of MWNTs. The conjugates could effectively deactivate S. aureus cells in solution upon irradiation with visible light. We also designed large area nanocomposite films comprised of the MWNT-PPIX conjugates that showed potent antimicrobial activity. These MWNT-PPIX conjugates represent a facile strategy for the design of antimicrobial and antifouling coatings. 相似文献
32.
Ambarish Ray Indrani Bhowmick Atish Dipankar Jana Mahammed Ali 《Journal of solid state chemistry》2009,182(10):2608-5253
A [Ni(CN)4]2−-based two-dimensional Mn(II) coordination polymer {Mn(H2O)2[NiCN]4·4H2O}, in which the coordination layers are stacked on top of each other sandwiching 2D water layer of boat-shaped hexagonal water clusters has been synthesized. The complex exhibits high thermal decomposition temperature and reversible water absorption, which were clearly demonstrated by thermal and PXRD studies on the parent and rehydrated complex after dehydration. 相似文献
33.
Salicylaldehyde thiosemicarbazone (H2saltsc) reacts with [M(PPh3)3X2] (M = Ru, Os; X = Cl, Br) to afford complexes of type [M(PPh3)2(Hsaltsc)2], in which the salicylaldehyde thiosemicarbazone ligand is coordinated to the metal as a bidentate N,S-donor forming a four-membered
chelate ring. Reaction of benzaldehyde thiosemicarbazones (Hbztsc-R) with [M(PPh3)3X2] also affords complexes of similar type, viz. [M(PPh3)2(bztsc-R)2], in which the benzaldehyde thiosemicarbazones have also been found to coordinate the metal as a bidentate N,S-donor forming
a four-membered chelate ring as before. Reaction of the Hbztsc-R ligands has also been carried out with [M(bpy)2X2] (M = Ru, Os; X = Cl, Br), which has afforded complexes of type [M(bpy)2(bztsc-R)]+, which have been isolated as perchlorate salts. Coordination mode of bztsc-R has been found to be the same as before. Structure
of the Hbztsc-OMe ligand has been determined and some molecular modelling studies have been carried out determine the reason
for the observed mode of coordination. Reaction of acetone thiosemicarbazone (Hactsc) has then been carried out with [M(bpy)2X2] to afford the [M(bpy)2(actsc)]ClO4 complexes, in which the actsc ligand coordinates the metal as a bidentate N,S-donorformingafive-membered chelate ring. Reaction
of H2saltsc has been carried out with [Ru(bpy)2Cl2] to prepare the [Ru(bpy)2(Hsaltsc)]ClO4 complex, which has then been reacted with one equivalent of nickel perchlorate to afford an octanuclear complex of type [Ru(bpy)2(saltsc-H)4Ni4](ClO4)4. 相似文献
34.
Anirban Ganguly M. De Sarkar Anil K. Bhowmick 《Journal of Polymer Science.Polymer Physics》2007,45(1):52-66
Atomic force microscopy was successfully applied for comprehensive nanoscale surface and bulk morphological characterization of thermoplastic elastomeric triblock copolymers: poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) having different block lengths and their clay based nanocomposites. Commercially available Cloisite®20A and octadecyl (C18) ammonium ion modified montmorillonite clay (OC) prepared in our laboratory by cation exchange reaction were used. The phase detected images in the tapping mode atomic force microscopy exhibited a well‐ordered phase separated morphology consisting of bright nanophasic domains corresponding to hard component and darker domains corresponding to softer rubbery ethylene‐co‐butylene (PEB) lamella for all the neat triblock copolymers. This lamellar morphology gave a domain width of 19–23 nm for styrenic nanophase and 12–15 nm for ethylene‐co‐butylene phase of SEBS having end to mid block length ratio of 30:70 and block molecular weights of 8800–41,200–8800. On increasing the ratio of block lengths of the polymer matrix and the selectivity of the solvent toward the blocks used for casting, the morphological features of the resultant films altered along with change in domain thickness. The phase images showed position and distribution of the brightest clay stacks in the dark‐bright contrast of the base matrix of the nanocomposite. Exfoliated and intercalated‐exfoliated morphology obtained in the case of Cloisite®20A and OC‐based SEBS nanocomposites, respectively, is further supported by X‐ ray diffraction and transmission electron microscopy studies. The lamellar thickness of the soft phases widened to 50–75 nm, where the layered clay silicates (40–54 nm in length and 4–17 nm in width) were embedded in the soft rubbery phases in the block copolymeric matrix of the nanocomposite. The marginally thicker width of the hard styrenic phases and slightly shrinked width of the soft rubbery lamella can be observed from the regions where no nanofiller is present. Distinct differences in bulk morphologies of the nanocomposites prepared in the melt and the solution processes were obtained with nanocomposites. The presence of clay particles was evident from the almost zero pull‐off and snap‐in force in the force‐distance analysis of SEBS based nanocomposite. This analysis also revealed stronger tip interaction resulting in highest contact and adhesive forces with the softer PEB region relative to the harder PS region. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 52–66, 2007 相似文献
35.
Jyotishman Bhowmick 《Journal of Functional Analysis》2010,258(9):2937-2960
For μ∈(0,1), c?0, we identify the quantum group SOμ(3) as the universal object in the category of compact quantum groups acting by ‘orientation and volume preserving isometries’ in the sense of Bhowmick and Goswami (2009) [4] on the natural spectral triple on the Podles sphere constructed by Dabrowski, D'Andrea, Landi and Wagner (2007) in [9]. 相似文献
36.
37.
Nonlinear Dynamics - The article proposes a distributed attitude consensus algorithm for multi-agent rigid bodies on the tangent bundle $$mathrm{TSO}(3)^N$$ . It is assumed that a directed fixed... 相似文献
38.
Nonlinear Dynamics - In this paper, a novel robust tracking control strategy for nonlinear unmatched uncertain systems is formulated using the event-based adaptive dynamic programming (ADP)... 相似文献
39.
We show that the surface of a thin elastomer-metal (aluminum) hybrid bilayer becomes spontaneously patterned when brought in adhesive contact with a rigid surface. The self-organized surface patterns show three distinct morphological phases-columns, labyrinths, and holes-depending on the area of contact. The characteristic wavelength of these patterns is found to be 2.94+/-0.20 times the total film thickness, independent of the morphological phase and the surface properties of the contacting surface. Interestingly, the metal films 60-120 nm thick showed the same scaling, but the bilayers with thicker metal films were completely stable. This observation demonstrates for the first time a "hard" transition to the instability as the elastic stiffness of the film is varied. We also report a protocol for alignment of the instability patterns and for transferring the metal patterns to another surface. 相似文献
40.
Mohsen Doust Mohammadi Renjith Bhaskaran Hewa Y. Abdullah Hassan H. Abdallah George Biskos Somnath Bhowmick 《International journal of quantum chemistry》2024,124(1):e27288
We have investigated the potential energy curves (PECs) of the LiN heteronuclear diatomic molecule, including its ionic species LiN+ and LiN−, using explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations in conjunction with the correlation consistent quintuple-𝜁 basis set. The effect of core–valence correlation, scalar relativistic effects, and the size of the basis sets has been investigated. A comprehensive set of spectroscopic constants determined based on the above-mentioned calculations are also reported for the lowest electronic states and all systems, including dissociation energies, harmonic and anharmonic vibrational frequencies, and rotational constants. Additional parameters, such as the dipole moments, equilibrium spin-orbit constants, excitation energies, and rovibrational energy levels, are also documented. We found that the three triplet states of LiN, namely, X 3∑−, A 3Π, and 2 3∑−, exhibit substantial potential wells in the PEC diagrams, while the quintet states are repulsive in nature. The ground state of the anion also shows a deep potential well in the vicinity of its equilibrium geometry. In contrast, the ground and excited states of the cation are very loosely bound. Charge transfer properties of each of these states are also analyzed to obtain an in-depth understanding of the interatomic interactions. We found that the core–valence correlation has a substantial effect on the calculated spectroscopic constants. 相似文献