首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1572篇
  免费   81篇
  国内免费   9篇
化学   1207篇
晶体学   28篇
力学   42篇
数学   109篇
物理学   276篇
  2024年   13篇
  2023年   28篇
  2022年   84篇
  2021年   111篇
  2020年   40篇
  2019年   64篇
  2018年   57篇
  2017年   55篇
  2016年   91篇
  2015年   61篇
  2014年   78篇
  2013年   99篇
  2012年   132篇
  2011年   127篇
  2010年   74篇
  2009年   53篇
  2008年   72篇
  2007年   70篇
  2006年   66篇
  2005年   71篇
  2004年   45篇
  2003年   38篇
  2002年   21篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   12篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1935年   1篇
  1934年   1篇
排序方式: 共有1662条查询结果,搜索用时 15 毫秒
51.
In this work, carbon electrodes modified with aminophenols were developed for the production of pesticides biosensors based on acetylcholinesterase. The polymers were potentiodynamically deposited on a graphite electrode surface by the oxidation of monomers, 2-aminophenol, 3-aminophenol and 4-aminophenol. The electrochemical behaviour and surface analysis of the electrodes modified by polyaminophenols non-immobilized and immobilized on acetylcholinesterase were studied by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy. Roughness values obtained for graphite electrodes modified with poly(4-aminophenol) and poly(4-aminophenol)/acetylcholinesterase were 174 and 86 nm, respectively. The acetylcholinesterase enzyme was immobilized on a graphite and a graphite modified with poly(4-aminophenol), and these electrodes were coupled in the flow system. Potentiometric response due to hydrogen ions generated by an enzymatic system in the presence of acetylcholine chloride substrate was evaluated. The results showed that the graphite/poly(4-aminhophenol) sensor presents high sensitivity to hydrogen ions when compared with other graphite/polyaminophenols sensors. The biosensor coupled in a continuous flow system was employed for the detection of dichlorvos. The detection and quantification limits were 0.8 and 2.4 μmol L−1 dichlorvos, respectively. This sensor reveals an efficient and promising material for biomolecules immobilization.  相似文献   
52.
53.
This paper presents a novel and efficient locally adaptive denoising method based on clustering of pixels into regions of similar geometric and radiometric structures. Clustering is performed by adaptively segmenting pixels in the local kernel based on their augmented variational series. Then, noise pixels are restored by selectively considering the radiometric and spatial properties of every pixel in the formed clusters. The proposed method is exceedingly robust in conveying reliable local structural information even in the presence of noise. As a result, the proposed method substantially outperforms other state-of-the-art methods in terms of image restoration and computational cost. We support our claims with ample simulated and real data experiments. The relatively fast runtime from extensive simulations also suggests that the proposed method is suitable for a variety of image-based products ?? either embedded in image capturing devices or applied as image enhancement software.  相似文献   
54.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
55.
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN→π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17O NMR and 15N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.  相似文献   
56.

Co–Fe bimetallic nanoparticles-affixed polyvinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) nanofiber membrane is fabricated using the electrospinning and chemical reduction techniques. The semicrystalline polymeric backbone decorated with the highly crystalline Co–Fe bimetallic nanoparticles enunciates the mechanical integrity, while the incessant and swift electron mobility is articulated with the consistent dissemination of bimetallic nanoparticles on the intersected and multi-layered polymeric nanofibers. The diffusion and adsorption of glucose are expedited in the extended cavities and porosities of as-formulated polymeric nanofibers, maximizing the glucose utilization efficacy, while the uniformly implanted Co4+/Fe3+ active centers on PVdF-HFP nanofibers maximize the electrocatalytic activity toward glucose oxidation under alkaline regimes. Thus, the combinative sorts including nanofiber and nanocomposite strategies of PVdF-HFP/Co–Fe membrane assimilate the enzyme-less electrochemical glucose detection concerts of high sensitivity (375.01 μA mM?1 cm?2), low limit of detection (0.65 μm), and wide linear range (0.001 to 8 mM), outfitting the erstwhile enzyme-less glucose detection reports. Additionally, the endowments of high selectivity and real sample glucose-sensing analyses of PVdF-HFP/Co–Fe along with the binder-less and free-standing characteristics construct the state-of-the-art paradigm for the evolution of affordable enzyme-less electrochemical glucose sensors.

  相似文献   
57.
58.
59.
Journal of Thermal Analysis and Calorimetry - In this investigation, a series of experiments were conducted to explore the effects of liquefied petroleum gas (LPG) mixture of 60% propane and 40%...  相似文献   
60.
Transparent inorganic‐polymer nanocomposite films are of tremendous current interest inemerging solar coverings including photovoltaic encapsulants and commercial greenhouse plastics, but suffer from significant radiative heat loss. This work provides a new and simple approach for controlling this heat loss by using mesoporous silica/quantum dot nanoparticles in poly(ethylene‐co‐vinyl acetate) (EVA) films. Mesoporous silica shells were grown on CdS‐ZnS quantum dot (QDs) cores using a reverse microemulsion technique, controlling the shell thickness. These mesoporous silica nanoparticles (MSNs) were then melt‐mixed with EVA pellets using a mini twin‐screw extruder and pressed into thin films of concentration variable controlled thickness. The results demonstrate that the experimental MSNs showed improved infrared and thermal wavebands retention in the EVA transparent films compared to commercial silica additives, even at lower concentrations. It was also found MSNs enhanced the quantum yield and photostability of the QDs, providing high visible light transmission and blocking of UV transmission of interest for next generation solar coatings. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 851–859  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号