首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   9篇
  国内免费   1篇
化学   127篇
数学   3篇
物理学   24篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   16篇
  2007年   10篇
  2006年   22篇
  2005年   14篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1935年   1篇
排序方式: 共有154条查询结果,搜索用时 31 毫秒
41.
The effect of pressure on structure and water speciation in hydrated liquid silica is examined over a range of temperatures and compositions. The Feuston-Garofalini (FG) potential is used in isobaric-isothermal Monte Carlo simulations carried out at four pressures (0.25, 1.0, 2.5, and 10 GPa) for seven temperatures (2000 < or = T < or= 9000 K) and five compositions (0.0 < or = x_w < or = 0.4). The FG potential yields a stable melt phase for p > or = 1.0 GPa and/or x_w < or = 0.1 for all temperatures. The volume minimum seen in previous simulations of pure and hydrated liquid silica using the FG potential persists up to 2.5 GPa but is no longer evident at 10 GPa. This is correlated with gradual structural changes of the liquid up to 2.5 GPa and with more significant changes at 10 GPa. Even at high overall concentrations of water (x_w = 0.4), only about 2% of oxygen atoms are present as molecular water species at the lowest temperature. This percentage decreases with increasing pressure and temperature.  相似文献   
42.
Boron-enriched scaffolds have demonstrated unique features and promising performance in the field of catalysis towards the activation of small gas molecules. However, there is still a lack of facile approaches capable of achieving high B doping and abundant porous channels in the targeted catalysts. Herein, construction of boron- and nitrogen-enriched nanoporous π-conjugated networks (BN-NCNs) was achieved via a facile ionothermal polymerization procedure with hexaazatriphenylenehexacarbonitrile [HAT(CN)6] sodium borohydride as the starting materials. The as-produced BN-NCN scaffolds were featured by high heteroatoms doping (B up to 23 wt. % and N: up to 17 wt. %) and permanent porosity (surface area up to 759 m2 g−1 mainly contributed by micropores). With the unsaturated bonded B species acting as the active Lewis acid sites and defected N species acting as the active Lewis base sites, those BN-NCNs delivered attractive catalytic performance towards H2 activation/dissociation in both gaseous and liquid phase, acting as efficient metal-free heterogeneous frustrated Lewis pairs (FLPs) catalysts in hydrogenation procedures.  相似文献   
43.
We introduce a rapid, simple one-step procedure for the high-yield immobilization of cholesteryl-tetraethyleneglycol-modified oligonucleotides (chol-DNA) at hydrophobic sites made of SU-8 photoresist. Topographic structures of SU-8 were microfabricated on microscope glass coverslips sputtered with a Ti/Au layer. Upon application, chol-DNA adsorbed to the SU-8 structures from solution, leaving the surrounding gold surface free of chol-DNA. chol-DNA immobilization is complete within 15 min and yields a surface coverage in the range of 20-95 pmol/cm(2), which corresponds to a film density of 10(12)-10(13) molecules/cm(2). chol-DNA immobilization is stable and can be sustained despite rinsing, drying, dry storage for several hours, and rehydration of chips. Furthermore, complementary DNA in solution hybridizes efficiently to immobilized chol-DNA.  相似文献   
44.
We report on the self-assembly in water of a set of bis-urea amphiphiles. A range of techniques, including dynamic light scattering, Cryo-TEM, SAXS, and MS are used to study the effect of structural variation on the morphology of the assemblies. The length, dispersity, and end-group of the ethylene glycol hydrophilic part of the molecule, as well as of the alkyl chain length are varied to tailor the morphology towards soluble wormlike micelles. Slight modification on molecular structures gave a large difference in self-assembly behavior in water, giving guidelines for the design of rodlike supramolecular fibers with novel functionalities, such as strain-stiffening and bioactivity.  相似文献   
45.
A wide range of natural purine analogues was used as probe to assess the mechanism of recognition by the wild‐type (WT) E. coli purine nucleoside phosphorylase (PNP) versus its Ser90Ala mutant. The results were analyzed from viewpoint of the role of the Ser90 residue and the structural features of the bases. It was found that the Ser90 residue of the PNP 1) plays an important role in the binding and activation of 8‐aza‐7‐deazapurines in the synthesis of their nucleosides, 2) participates in the binding of α‐D ‐pentofuranose‐1‐phosphates at the catalytic site of the PNP, and 3) catalyzes the dephosphorylation of intermediary formed 2‐deoxy‐α‐D ‐ribofuranose‐1‐phosphate in the trans‐2‐deoxyribosylation reaction. 5‐Aza‐7‐deazaguanine manifested excellent substrate activity for both enzymes, 8‐amino‐7‐thiaguanine and 2‐aminobenzothiazole showed no substrate activity for both enzymes. On the contrary, the 2‐amino derivatives of benzimidazole and benzoxazole are substrates and are converted into the N1‐ and unusual N2‐glycosides, respectively. 9‐Deaza‐5‐iodoxanthine showed moderate inhibitory activity of the WT E. coli PNP, whereas 9‐deazaxanthine and its 2′‐deoxyriboside are weak inhibitors.  相似文献   
46.
The synergy of aromatic gain and hydrogen bonding in a supramolecular polymer is explored. Partially aromatic bis(squaramide) bolaamphiphiles were designed to self‐assemble through a combination of hydrophobic, hydrogen‐bonding, and aromatic effects into stiff, high‐aspect‐ratio fibers. UV and IR spectroscopy show electron delocalization and geometric changes within the squaramide ring indicative of strong hydrogen bonding and aromatic gain of the monomer units. The aromatic contribution to the interaction energy was further supported computationally by nucleus‐independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) indices, demonstrating greater aromatic character upon polymerization: at least 30 % in a pentamer. The aromatic gain–hydrogen bonding synergy results in a significant increase in thermodynamic stability and a striking difference in aggregate morphology of the bis(squaramide) bolamphiphile compared to isosteres that cannot engage in this effect.  相似文献   
47.
Molecular simulations of water/acetonitrile and water/methanol mobile phases in contact with a C(18) stationary phase were carried out to examine the molecular-level effects of mobile phase composition on structure and retention in reversed-phase liquid chromatography. The simulations indicate that increases in the fraction of organic modifier increase the amount of solvent penetration into the stationary phase and that this intercalated solvent increases chain alignment. This effect is slightly more apparent for acetonitrile containing solvents. The retention mechanism of alkane solutes showed contributions from both partitioning and adsorption. Despite changes in chain structure and solvation, the molecular mechanism of retention for alkane solutes was not affected by solvent composition. The mechanism of retention for alcohol solutes was primarily adsorption at the interface between the mobile and stationary phase, but there were also contributions from interactions with surface silanols. The interaction between the solute and surface silanols become very important at high concentrations of acetonitrile.  相似文献   
48.
We have prepared an aqueous physical gel consisting of negatively charged silica nanoparticles bridged by ABA triblock copolymers, in which the A blocks are positively charged and the B block is neutral and water-soluble. Irreversible aggregation of the silica nanoparticles was prevented by precoating them with a neutral hydrophilic polymer. Both the elastic plateau modulus and the relaxation time increase slowly as the gel ages, indicating an increase both in the number of active bridges and in the strength with which the end blocks are adsorbed. The rate of this aging process can be increased significantly by applying a small shear stress to the sample. Our results indicate that charge-driven bridging of nanoparticles by triblock copolymers is a promising strategy for thickening of aqueous particle containing materials, such as water-based coatings.  相似文献   
49.
We present a series of experimental results that disclose the crucial role of ionic strength and partial volume fractions in the control of the phase behaviour of binary protein mixtures. Our findings can be understood as that the ionic strength determines the relative contribution of the entropy of the protein counter-ions to the overall thermodynamics of the system. Associative phase separation and crystallization observed at, respectively, low and high ionic strength are suppressed at intermediate salt concentrations, where the entropy gain upon releasing the counter-ions from the double layer of the proteins is negligible and the entropy loss upon confining the counter-ions within the protein crystal phase significant. Moreover, we find that the partial volume fraction of the protein prone to crystallize determines the crystallization boundary and that the presence of other proteins strongly delays crystallization, leading to temporarily stable mixtures. These findings suggest that stability in more complex protein mixtures, such as the cytosol, relates to the ionic strength and protein composition rather than to protein specific properties.  相似文献   
50.
Aerated autoclaved concrete (AAC) is a modern and important construction material, whose elastic properties are primarily defined by its porosity. The possibility to predict elastic properties of AAC based on the voids distribution is very important. The report describes simulations of the mechanical properties of AAC, based on a stochastic-geometric model of its structure. The model is the well-known “cherry-pit” model, which presents a random system of partially overlapping spheres. In the mechanical analysis the solid phase is approximated by a network model with the help of the so-called radical tessellation with respect to the hard spheres of the “cherry-pit” model. The network edges are modelled in ANSYS as 3D beams. In this approach, the discretized elements (the edges) have in distinction to FE calculations with small polyhedral same dimension as the air voids and so the numerical costs can be drastically reduced. The FE simulations calculate the elastic constants and energy concentrations, which are responsible for the material failures, in large samples. Comparisons with fracture tests showed good matching between simulations and experiments. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号