首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   24篇
  国内免费   1篇
化学   1035篇
晶体学   10篇
力学   8篇
数学   94篇
物理学   298篇
  2021年   9篇
  2020年   18篇
  2019年   12篇
  2018年   16篇
  2017年   11篇
  2016年   18篇
  2015年   23篇
  2014年   15篇
  2013年   55篇
  2012年   41篇
  2011年   79篇
  2010年   44篇
  2009年   37篇
  2008年   59篇
  2007年   78篇
  2006年   67篇
  2005年   55篇
  2004年   59篇
  2003年   64篇
  2002年   51篇
  2001年   35篇
  2000年   23篇
  1999年   22篇
  1998年   9篇
  1997年   32篇
  1996年   18篇
  1995年   10篇
  1994年   18篇
  1993年   27篇
  1992年   26篇
  1991年   17篇
  1990年   26篇
  1989年   18篇
  1988年   17篇
  1987年   24篇
  1986年   16篇
  1985年   36篇
  1984年   24篇
  1983年   13篇
  1982年   14篇
  1981年   13篇
  1980年   27篇
  1979年   30篇
  1978年   23篇
  1977年   19篇
  1976年   15篇
  1975年   9篇
  1974年   13篇
  1973年   13篇
  1972年   10篇
排序方式: 共有1445条查询结果,搜索用时 0 毫秒
51.
The formation of ground-state complexes of methylene blue (MB) and thionine (TN) with sodium hyaluronate (NaHA) was clearly observed by means of absorption spectra in aqueous solution. Irradiation of the complexes using 313 nm light caused significant degradation of NaHA under oxygen and argon. However, the use of visible light over 400 nm, which gives the lowest excited singlet state of the cationic dyes, caused no degradation. MB and TN were more efficient sensitizers for the degradation of NaHA than rose bengal (RB), although RB is a more efficient singlet oxygen (1O2) sensitizer than the cationic dyes. Under similar conditions the polysaccharides with carboxyl groups, such as alginic acid and polygalacturonic acid, also photodecomposed. However, the polysaccharides without carboxyl groups, such as pullulan and methyl cellulose, did not. The irradiation of the polysaccharides in the presence of powdered titanium dioxide as a photocatalyst to generate the hydroxyl radical (.OH) in aerated aqueous solution caused the fragmentation of all the polymers. It was confirmed that methyl viologen, an electron-accepting sensitizer, formed a charge-transfer complex with NaHA, the irradiation of which caused the efficient degradation of NaHA. In the presence of beta- and gamma-cyclodextrins the MB- and TN-sensitized photodegradation of NaHA was markedly suppressed. This was probably due to the formation of the inclusion complexes comprising the cationic dyes and the cyclodextrins. On the basis of the results obtained we propose that the cationic dye-sensitized degradation of NaHA involves a photoinduced electron-transfer process between the upper excited dyes and the ground-state NaHA and that .OH and 1O2 do not participate in the degradation.  相似文献   
52.
Two novel pseudopolymorphs, methanolate and ethanolate of tamoxifen [(Z)-2-[4-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethylethylamine]citrate, were prepared in addition to forms A and B reported previously. Their crystalline forms were identified and characterized by powder and single crystal X-ray diffractometry, differential scanning calorimetry, thermogravimetric analysis, hot-stage microscopy, scanning electron microscopy and diffuse reflectance infrared Fourier-transform spectroscopy, and their physicochemical stability was also evaluated. The results of single crystal X-ray analysis and thermogravimetric analysis of methanolate and ethanolate suggested that the stoichiometry of tamoxifen citrate : methanol and tamoxifen citrate : ethanol could be composed of a 1 : 1 molecular ratio for both solvates. The results of physicochemical stability evaluations at 75 and 97% RH at 40 and 60 degrees C indicated that the metastable form A was quite stable for at least 2 months even under severe storage conditions, whereas methanolate immediately transformed to a crystalline mixture of forms A and B, and subsequently changed to the stable form B.  相似文献   
53.
A microfabrication technique is presented to fabricate a mesostructured inorganic/organic composite film, i.e., silica/cetyltrimethylammonium chloride (CTAC) film, with near-perfect site-selectivity on a large surface area based on a spatially regulated growth method. To precisely regulate the site-selective growth of this mesocomposite film at the solid/liquid interface, we designed a novel microtemplate consisting of a "dual-component" self-assembled monolayer (SAM) with alternating hydrophobic trifluorocarbon (CF3) and cationic amino (NH2) groups. First, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FAS)-SAM was formed onto Si substrate covered with native oxide (SiO2/Si) from vapor phase. The substrate was then photolithographically micropatterned using 172 nm vacuum UV light. Finally, the micropatterned FAS-SAM was immersed in a solution of 1 vol % (aminoethylaminomethyl)phenethyltrimethoxysilane (AEAMPS) in absolute toluene. Due to these treatments, a dual-SAM microtemplate with CF3- and NH2-terminated surfaces was fabricated, as evidenced by lateral force microscopy, ellipsometry, and X-ray photoelectron spectroscopy. Using this template, the microfabrication of a mesocomposite film was demonstrated. As a control, the micropatterned hydrophobic FAS-SAM template (composed of CF3- and OH-terminated surfaces) was also treated under the same conditions. Optical microscopy and atomic force microscopy confirmed that the formation of the continuous mesocomposite film proceeded only on the FAS-SAM-covered regions, while the AEAMPS-SAM-covered regions remained free of deposits. This shielding effect also remained constant regardless of the pattern's geometry, i.e., the interval distance between the FAS-SAM-covered areas in the pattern. Through this approach, we were able to obtain well-defined 5-, 10-, and 20-mum wide mesocomposite microlines over the entire 10 x 10 mm2 area with high area-selectivity. On the other hand, when the SiO2 regions were not terminated with the cationic NH2 groups, cluster formation proceeded not only on the hydrophobic CF3 regions but also on the SiO2 regions, particularly with an increase in the pattern interval distance, resulting in lower final pattern resolution.  相似文献   
54.
All- trans β-carotene-5,6-epoxide has been found in the thylakoid membranes of spinach and of the cyanobacterium Synechococcus vulcanus Copeland. The epoxide was extracted from the thylakoid membranes with acetone, and was isolated by high-performance liquid chromatography (HPLC). The structure of the epoxide was identified by means of mass, Raman, and electronic absorption spectroscopy. Changes in the amount of the epoxide, as a result of epoxidation and (apparent) de-epoxidation reactions in the membranes, were traced by analysis of extracts on HPLC. In isolated thylakoid membranes, only the epoxidation reaction took place. The reaction was caused by irradiation or by the addition of ferricyanide, suggesting that electron transport reactions in the membranes are involved in the epoxidation. In intact spinach leaves, however, both epoxidation and de-epoxidation took place; the extent of epoxidation correlated with the intensity of light incident on the leaves. The epoxidation and de-epoxidation of all- trans β-carotene are contrasted with those of xanthophylls (in the violaxanthin cycle).  相似文献   
55.
Casearins G-R, new cytotoxic clerodane diterpenes have been isolated from the leaves of Casearia sylvestris Sw. (Flacourtiaceae). Their structures have been elucidated by spectroscopic methods and chemical conversions, and their structure-activity relationships have been discussed.  相似文献   
56.
A simple and sensitive method for the determination of alkylphenols in water samples has been developed using gas chromatography-mass spectrometry. Alkylphenols were determined after the extractive derivatization with pentafluoropyridine. The derivatization of alkylphenols efficiently proceeded to give the corresponding 4-tetrafluoropyridyl derivatives under the biphasic reaction system. The derivatization conditions including the phase-transfer catalyst, the amount of pentafluoropyridine, the reaction time, the concentration of NaOH and organic solvent were optimized. On the mass spectra of these derivatives, intense specific ion peaks were observed: m/z 256 for 4-n-alkylphenols and m/z 284 for 4-tert.-alkylphenols. Calibration curves were linear in the range of 20-1000 ng/l (200-10,000 ng/l for nonylphenol), and the detection limits varied between 6.93 and 15.7 ng/l (85.2 ng/l for nonylphenol). The average recoveries of the alkylphenols in a fortified river water sample (100 ng/l except for nonylphenol: 1000 ng/l) ranged from 91.1 to 112%. The relative standard deviations were found to be between 5.6 and 16%. This method was successfully applied to the determination of alkylphenols in river water.  相似文献   
57.
The design and synthesis of an enantiomeric pair of 1,8‐diethynylanthracene‐bridged naphthalenediimide (NDI)‐based cyclophanes ( Cyclo‐NDI s) are reported. Each enantiomer of Cyclo‐NDI exhibits a circularly polarized luminescence signal with a relatively large luminescence dissymmetry factor (glum=±8×10?3). We have further investigated the modulation of through‐space electronic communication between co‐facially oriented NDIs in a discrete Cyclo‐NDI with changes in the temperature. Tuning of the electronic communication results from the conformational transformation of monomer‐ versus dimer‐like features of Cyclo‐NDI , as confirmed by UV/Vis, fluorescence, circular dichroic, and NMR spectroscopic analysis. The temperature‐dependent optical response in the Cyclo‐NDI through the conformational transformation could be utilized as a highly sensitive and reversible optical thermometer in a wide temperature range (100 to ?80 °C).  相似文献   
58.
We have developed a new method that enables agar microstructures to be used to cultivate cells and that allows cell network patterns to be controlled. The method makes use of non-contact three-dimensional photo-thermal etching with a 1480 nm infrared focused laser beam, which is strongly absorbed by water and agar gel, to form the shapes of agar microstructures. It allows microstructures to be easily formed in an agar layer within a few minutes, with cell-culture holes formed by the spot heating of a 100 mW laser and tunnels by the tracing of a 100 microm s(-1), 40 mW laser. We cultivated rat cardiac myocytes in adjacent microstructures and observed synchronized beating in them 90 min after they had made physical contact. Our results indicate that the system can make and use microstructures for cell-network cultivation in a minimal amount of time without any expensive microfabrication facilities or complicated procedures.  相似文献   
59.
1. Introduction As an effective utilization of methane, the methane dehydro-aromatization was focused in the last decade [1-28]. Over the Mo/HZSM-5 bi- functional catalyst at high reaction temperature, methane can be converted into light aromatics (ben- zene and naphthalene) and hydrogen. Mo active species can activate the C—H bond of methane; and HZSM-5 supplies the acid sites for the oligomeriza- tion and cyclization of hydrocarbons to form aromat- ics, and suppresses the deeper condens…  相似文献   
60.
Changes in binding affinity to catalytic antibody 6D9 of chloramphenicol phosphonate derivatives (CPDs) containing H or F were investigated by performing free energy calculations based on molecular dynamics simulations. We calculated the binding free energy, enthalpy, and entropy changes (DeltaDeltaG, DeltaDeltaH, and -TDeltaDeltaS) attributable to H-->F substitution by comparing results for CPDs containing a trifluoroacetylamino group (CPD-F) or an acetylamino group (CPD-H). The calculated DeltaDeltaG, DeltaDeltaH, and -TDeltaDeltaS values were -2.9, -6.3, and 3.5 kcal mol(-1) and close to experimental values observed for a series of similar ligands, chloramphenicol phosphonates with F and H (-1.4, -3.5, and 2.1 kcal mol(-1)). Therefore, CPD-F binds more strongly to 6D9 than does CPD-H. To clarify the origin of the large difference in DeltaDeltaG, we apportioned the calculated values of DeltaDeltaG and DeltaG for the associated and dissociated states into contributions from various atomic interactions. We found that the H-->F substitution increased the binding affinity mainly by decreasing the hydration free energy and not by increasing favorable interactions with the antibody. The decreased hydration free energy of the ligand was mainly due to unfavorable coulombic interactions between the trifluoroacetylamino group and solvent waters, which increased the free energy of the dissociated state (by about 3.7 kcal mol(-1)). Also, the trifluoroacetylamino group slightly increased the free energy level of the associated state (about 0.8 kcal mol(-1)) because favorable van der Waals interactions compensated for unfavorable coulombic interactions with antibody atoms. In addition, the enthalpy and entropy changes, DeltaDeltaH and -TDeltaDeltaS (computationally -6.3 and 3.5 kcal mol(-1)), originated mainly from a decrease in hydration free energy in the dissociated state. The CPD-F and CPD-H ligands had substantially different structures in the dissociated and complexed states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号