首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   14篇
数学   2篇
物理学   1篇
  2022年   2篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
A series of new polymerizable non-ionic and ionic surfactants (surfmers) with amides groups on both sides of the C=C double bonds have been prepared upon reaction of maleic isoimide carrying a long alkyl chain (or a benzyl group) with a hydrophilic amine derivative. Their critical micellar concentration (CMC) was measured with a surface tensiometer. They have been engaged in batch emulsion polymerization of styrene, and semi-batch seeded copolymerization of styrene and butyl acrylate, giving stable latexes during the polymerization process, and upon extraction with ethanol, showing a high rate of incorporation at the particle surface. However these surfmers do not confer good steric stabilization properties, which may be expected from the use of non-ionic surfactants. To cite this article: I. Klimenkovs et al., C. R. Chimie 6 (2003).  相似文献   
12.
The branching of ionic liquid cation sidechains utilizing silicon as the backbone was explored and it was found that this structural feature leads to fluids with remarkably low density and viscosity. The relatively low liquid densities suggest a large free volume in these liquids. Argon solubility was measured using a precise saturation method to probe the relative free volumes. Argon molar solubilities were slightly higher in ionic liquids with alkylsilane and siloxane groups within the cation, compared to carbon-based branched groups. The anion size, however, showed by far the dominant effect on argon solubility. Thermodynamic solvation parameters were derived from the solubility data and the argon solvation environment was modelled utilizing the polarizable CL&Pol force field. Semiquantitative analysis was in agreement with trends established from the experimental data. The results of this investigation demonstrate design principles for targeted ionic liquids when optimisation for the free volume is required, and demonstrate the utility of argon as a simple, noninteracting probe. As more ionic liquids find their way into industrial processes of scale, these findings are important for their utilisation in the capture of any gaseous solute, gas separation, or in processes involving the transformation of gases or small molecules.

The branching of ionic liquid cation sidechains utilizing silicon as the backbone was explored and it was found that this structural feature leads to fluids with remarkably low density and viscosity.  相似文献   
13.
We report a novel observation of the tetragonal perforated layer structures in a series of rod-coil liquid crystalline block copolymers (BCPs), poly(styrene-block-(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PS-b-PMPCS). PMPCS forms rigid rods while PS forms the coil block. Differential scanning calorimetry (DSC), polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), and transmission electron microscopy (TEM) techniques were used to investigate these rod-coil molecules, and a perforated layer structure was observed at f(PMPCS) approximately 0.37 in relatively low molecular weight (M(w)) samples and approximately 0.5 in high M(w) PS-b-PMPCS. This substantial phase boundary shift was attributed to the rod-coil nature of the BCP. The perforation obeys a tetragonal instead of hexagonal symmetry. The "onset" of perforation was also observed in real space in sample PS(272)-b-PMPCS(93) (f(PMPCS) approximately 0.52), in which few PS chains punctuate PMPCS layers. A slight increase in f(PS), by blending with PS homopolymer, led to a dramatic change in the BCP morphology, and uniform tetragonal perforations were observed at f(PMPCS) approximately 0.48.  相似文献   
14.
Thermal transitions and morphological changes in Cloisite organoclays were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, and in situ simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) over the temperature range of 30-260 degrees C. On the basis of DSC and FTIR results, the surfactant component in organoclays was found to undergo a melting-like order-disorder transition between 35 and 50 degrees C. The transition temperatures of the DSC peaks (Ttr) in the organoclays varied slightly with the surfactant content; however, they were significantly lower than the melting temperature of the free surfactant (dimethyldihydrotallowammonium chloride; Tm = 70 degrees C). FTIR results indicated that within the vicinity of Ttr, the gauche content increased significantly in the conformation of surfactant molecules, while WAXD results did not show any change in three-dimensional ordering. Multiple scattering peaks were observed in SAXS profiles. In the SAXS data acquired below Ttr, the second scattering peak was found to occur at an angle lower than twice that of the first peak position (i.e., nonequidistant scattering maxima). In the data acquired above Ttr, the second peak was found to shift toward the equidistant position (the most drastic shift was seen in the system with the highest surfactant content). Using a novel SAXS modeling technique, we suggest that the appearance of nonequidistant SAXS maxima could result from a bimodal layer thickness distribution of the organic layers in organoclays. The occurrence of the equidistant scattering profile above Ttr could be explained by the conversion of the bimodal distribution to the unimodal distribution, indicating a redistribution of the surfactant that is nonbounded to the clay surface. At temperatures above 190 degrees C, the scattering maxima gradually broadened and became nonequidistant again but having the second peak shifted toward a scattering angle higher than twice the first peak position. The changes in SAXS patterns above 190 degrees C could be attributed to the collapse of organic layers due to desorption and/or degradation of surfactant component, which was supported by the TGA data.  相似文献   
15.
Semicrystalline polymer/layered silicate nanocomposites were prepared by solution blending of a low molecular weight poly(ethylene oxide) (PEO) with an organically modified montmorillonite, Cloisite 10A (C10A). The intercalation morphology was studied by temperature-dependent synchrotron wide-angle X-ray diffraction (WAXD). Unlike PEO homopolymers, significant secondary crystallization was observed in the PEO/C10A nanocomposites. Reversible de-intercalation and intercalation processes were detected during secondary crystallization and subsequent melting of secondary crystals. On the basis of two-dimensional WAXD results on oriented samples, an interphase layer between the silicate primary particles and PEO lamellar crystals was proposed. Secondary PEO crystallization in the interphase regions was inferred to be the primary driving force for polymer chains to diffuse out of the silicate gallery. This study provided a useful method to investigate polymer diffusion in nanoconfined spaces, which can be controlled by PEO secondary crystallization and melting outside the silicate gallery.  相似文献   
16.
Propanephosphonic acid anhydride (T3P) has been proposed as a novel reagent for the preparation of maleic acid isoimides from the corresponding monoamides. A series of substituted aromatic and aliphatic isoimides have been prepared in good yields. The main advantage of this synthetic method is the use of environmentally benign, cost-efficient reagents and solvents, which are also safer to handle than the ones employed previously.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   
17.
Hypervalent bromine(III) reagents possess a higher electrophilicity and a stronger oxidizing power compared to their iodine(III) counterparts. Despite the superior reactivity, bromine(III) reagents have a reputation of hard-to-control and difficult-to-synthesize compounds. This is partly due to their low stability, and partly because their synthesis typically relies on the use of the toxic and highly reactive BrF3 as a precursor. Recently, we proposed chelation-stabilized hypervalent bromine(III) compounds as a possible solution to both problems. First, they can be conveniently prepared by electro-oxidation of the corresponding bromoarenes. Second, the chelation endows bromine(III) species with increased stability while retaining sufficient reactivity, comparable to that of iodine(III) counterparts. Finally, their intrinsic reactivity can be unlocked in the presence of acids. Herein, an in-depth mechanistic study of both the electrochemical generation and the reactivity of the bromine(III) compounds is disclosed, with implications for known applications and future developments in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号