首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4262篇
  免费   55篇
  国内免费   47篇
化学   2543篇
晶体学   38篇
力学   140篇
数学   746篇
物理学   897篇
  2024年   21篇
  2023年   36篇
  2022年   110篇
  2021年   136篇
  2020年   131篇
  2019年   164篇
  2018年   124篇
  2017年   104篇
  2016年   173篇
  2015年   135篇
  2014年   154篇
  2013年   271篇
  2012年   298篇
  2011年   303篇
  2010年   199篇
  2009年   168篇
  2008年   263篇
  2007年   223篇
  2006年   259篇
  2005年   235篇
  2004年   186篇
  2003年   138篇
  2002年   124篇
  2001年   62篇
  2000年   45篇
  1999年   49篇
  1998年   28篇
  1997年   24篇
  1996年   25篇
  1995年   22篇
  1994年   29篇
  1993年   10篇
  1992年   16篇
  1991年   18篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1986年   3篇
  1985年   7篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   5篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有4364条查询结果,搜索用时 15 毫秒
61.
62.
Enzyme-functionalized mesoporous silica for bioanalytical applications   总被引:1,自引:0,他引:1  
The unique properties of mesoporous silica materials (MPs) have attracted substantial interest for use as enzyme-immobilization matrices. These features include high surface area, chemical, thermal, and mechanical stability, highly uniform pore distribution and tunable pore size, high adsorption capacity, and an ordered porous network for free diffusion of substrates and reaction products. Research demonstrated that enzymes encapsulated or entrapped in MPs retain their biocatalytic activity and are more stable than enzymes in solution. This review discusses recent advances in the study and use of mesoporous silica for enzyme immobilization and application in biosensor technology. Different types of MPs, their morphological and structural characteristics, and strategies used for their functionalization with enzymes are discussed. Finally, prospective and potential benefits of these materials for bioanalytical applications and biosensor technology are also presented. Figure Enzyme-functionalized mesoporous silica fibers and their integration in a biosensor design. The immobilization process takes place essentially in the silica micropores.  相似文献   
63.
Although membrane-bound dehydrogenases isolated from Gluconobacter sp. (mainly PQQ-dependent alcohol and fructose dehydrogenase) have been used for preparing diverse forms of bioelectronic interfaces for almost 2 decades, it is not an easy task to interpret an electrochemical behaviour correctly. Recent discoveries regarding redox properties of membrane-bound dehydrogenases along with extensive investigations of direct electron transfer (DET) or direct bioelectrocatalysis with these enzymes are summarized in this review. The main aim of this review is to draw general conclusions about possible electronic coupling paths of these enzymes on various interfaces via direct electron transfer or direct bioelectrocatalysis. A short overview of the metabolism and respiration chain in Gluconobacter relevant to interfacial electrochemistry is given. Biosensor devices based on DET or direct bioelectrocatalysis using membrane-bound dehydrogenases from Gluconobacter sp. are described briefly with the emphasis given on practical applications of preparing enzymatic biofuel cells. Moreover, interfacial electrochemistry of Gluconobacter oxydans related to the construction of microbial biofuel cells is also discussed.  相似文献   
64.
65.
Chemistry of Heterocyclic Compounds - An original and convenient procedure has been proposed for one-step preparation of 1-dichloromethyl- and 1-trichloromethylisoquinolines in up to 40% yields via...  相似文献   
66.
Biological molecules such as enzymes, cells, antibodies, lectins, peptide aptamers, and cellular components in an immobilized form are extensively used in biotechnology, in biorecognition and in many medicinal applications. This review provides a comprehensive summary of the developments in new immobilization materials, techniques, and their practical applications previously developed by the authors. A detailed overview of several immobilization materials and technologies is given here, including bead cellulose, encapsulation in ionotropic gels and polyelectrolyte complexes, and various immobilization protocols applied onto surfaces. In addition, the review summarises the screening and design of an immobilization protocol, practical applications of immobilized biocatalysts in the industrial production of metabolites, monitoring, and control of fermentation processes, preparation of electrochemical/optical biosensors and biofuel cells.  相似文献   
67.
We report a simple approach for enumeration of non-labile oxygen atoms in individual molecules of dissolved organic matter (DOM), using acid-catalyzed 16O/18O exchange and ultrahigh-resolution Fourier-transform ion-cyclotron-resonance mass spectrometry (FTICR-MS). We found that by dissolving DOM in H2 18O at 95 °C for 20 days it is possible to replace all oxygen atoms of DOM molecules (excluding oxygen from ether groups) with 18O. The number of exchanges in each molecule can be determined using high-resolution FTICR. Using the proposed method we identified the number of non-labile oxygen atoms in 231 molecules composing DOM. Also, using a previously developed hydrogen–deuterium (H/D)-exchange approach we identified the number of labile hydrogen atoms in 450 individual molecular formulas. In addition, we observed that several backbone hydrogen atoms can be exchanged for deuterium under acidic conditions. The method can be used for structural and chemical characterization of individual DOM molecules, comparing different DOM samples, and investigation of biological pathways of DOM in the environment.  相似文献   
68.
Enhancement of emission line intensities by induced oscillations of direct current (DC) arc plasma with continuous aerosol sample supply was investigated using multivariate statistics. Principal component analysis (PCA) was employed to evaluate enhancements of 34 atomic spectral lines belonging to 33 elements and 35 ionic spectral lines belonging to 23 elements. Correlation and classification of the elements were done not only by a single property such as the first ionization energy, but also by considering other relevant parameters. Special attention was paid to the influence of the oxide bond strength in an attempt to clarify/predict the enhancement effect. Energies of vaporization, atomization, and excitation were also considered in the analysis. In the case of atomic lines, the best correlation between the enhancements and first ionization energies was obtained as a negative correlation, with weak consistency in grouping of elements in score plots. Conversely, in the case of ionic lines, the best correlation of the enhancements with the sum of the first ionization energies and oxide bond energies was obtained as a positive correlation, with four distinctive groups of elements. The role of the gas-phase atom-oxide bond energy in the entire enhancement effect is underlined.  相似文献   
69.
70.
A novel sapphyrin derivative was obtained from the reaction between a free‐base sapphyrin and dimethyl acetylenedicarboxylate (DMAD). The formation of the new compound involved a double aza‐Michael addition of two pyrrolic NH groups to a DMAD molecule, with the formation of a disubstituted ethano bridge. The NMR spectral data reveal a product with an unsymmetrical structure; DFT calculations provided support for a structure in which the ethano bridge links two adjacent pyrrole units. The present study provides a seemingly unprecedented example of an N,N′‐dinucleophile reacting with DMAD to form a heterocyclic compound in which the two N‐atoms are linked to the two sp3 carbon atoms derived from a substituted acetylene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号