首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   1篇
化学   60篇
力学   6篇
数学   5篇
物理学   31篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2018年   4篇
  2017年   1篇
  2016年   10篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   13篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1996年   2篇
  1994年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1939年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
61.
62.
Despite unifloral honeys from Sardinia, Italy, being appreciated worldwide for their peculiar organoleptic features, their elemental signature has only partly been investigated. Hence, the principal aim of this study was to measure the concentration of trace and toxic elements (i.e., Ag, As, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, V, and Zn) in four unifloral honeys produced in Sardinia. For this purpose, an original ICP-MS method was developed, fully validated, and applied on unifloral honeys from asphodel, eucalyptus, strawberry tree, and thistle. Particular attention was paid to the method’s development: factorial design was applied for the optimization of the acid microwave digestion, whereas the instrumental parameters were tuned to minimize the polyatomic interferences. Most of the analytes’ concentration ranged between the relevant LoDs and few mg kg−1, while toxic elements were present in negligible amounts. The elemental signatures of asphodel and thistle honeys were measured for the first time, whereas those of eucalyptus and strawberry tree honeys suggested a geographical differentiation if compared with the literature. Chemometric analysis allowed for the botanical discrimination of honeys through their elemental signature, whereas linear discriminant analysis provided an accuracy level of 87.1%.  相似文献   
63.
Strawberry tree honey is a high-value honey from the Mediterranean area and it is characterised by a typical bitter taste. To possibly identify the secondary metabolites responsible for the bitter taste, the honey was fractionated on a C18 column and the individual fractions were subjected to sensory analysis and then analysed by liquid chromatography coupled with high-resolution tandem mass spectrometry in negative ion mode, using a mass spectrometer with an electrospray source coupled to a hybrid high resolution mass analyser (LC-ESI/LTQ-Orbitrap-MS). A chemometric model obtained by preliminary principal component analysis (PCA) of LC-ESI/LTQ-Orbitrap-MS data allowed the identification of the fractions that caused the perception of bitterness. Subsequently, a partial least squares (PLS) regression model was built. The studies carried out with multivariate analysis showed that unedone (2-(1,2-dihydroxypropyl)-4,4,8-trimethyl-1-oxaspiro [2.5] oct-7-en-6-one) can be considered responsible for the bitter taste of strawberry tree honey. Confirmation of the bitter taste of unedone was obtained by sensory evaluation of a pure standard, allowing it to be added to the list of natural compounds responsible for giving the sensation of bitterness to humans.  相似文献   
64.
A synthetic strategy to control the density of Mn12 clusters anchored on silicon(100) was investigated. Diluted monolayers suitable for Mn12 anchoring were prepared by Si-grafting mixtures of the methyl 10-undecylenoate precursor ligand with 1-decene spectator spacers. Different ratios of these mixtures were tested. The grafted surfaces were hydrolyzed to reveal the carboxylic groups available for the subsequent exchange with the [Mn12O12(OAc)16(H2O)4]4 H2O2 AcOH cluster. Modified surfaces were analyzed by attenuated total reflection (ATR)-FTIR spectroscopy, X-ray photoemission spectroscopy (XPS), and AFM imaging. Results of XPS and ATR-FTIR spectroscopy show that the surface mole ratio between grafted ester and decene is higher than in the source solution. The surface density of the Mn12 cluster is, in turn, strictly proportional to the ester mole fraction. Well-resolved and isolated clusters were observed by AFM, using a diluted ester/decene 1:1 solution.  相似文献   
65.
Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.  相似文献   
66.
67.
68.
69.
The kinetics of the isothermal degradation in static air atmosphere of four well known polymers, polyethylene (PE), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) was studied by both a long-term (more than three years) experiment at relatively low temperature (423 K) and a set of short-term experiments at higher temperatures. The activation energy (Ea) values of degradation were determined by both the MacCallum and Wilkinson literature methods, and were compared with those obtained through a new very simple method we set up, based on the direct regression of TG mass loss data. About two years ago we published the results concerning PE and PS because their mass losses during long-term experiments were sufficiently high. The long-term degradation experiments were continued until now and in this second part we report the results concerning PC and PMMA. The degradation Ea values calculated from short-term experimental data through the three different methods were in good agreement with each other for both PC and PMMA, thus confirming the general applicability of our simple method for the determination of Ea. The experimental data at lower temperature of PC were not in agreement with those at higher temperatures, thus confirming the low reliability of the kinetic parameters (and then of lifetime predictions) at low temperature determined by experiments at higher temperatures. Partially disagreeing results were obtained for PMMA, which were discussed and interpreted.  相似文献   
70.
A comparative study concerning the thermal stability of polystyrene (PS) and six POSS/PS nanocomposites of general formula R7R′(SiO1.5)8/PS (where R = cyclopentyl and R′ = phenyl, 4-methoxyphenyl, 4-tolyl, 3,5-xilyl, 4-fluorophenyl, and 2,4-difluorophenyl) was carried out in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Nanocomposites were prepared by in situ polymerization of styrene in the presence of 5 % w/w of POSS, but the actual filler concentration in the obtained nanocomposites, determined by 1H NMR spectroscopy, was in all cases slightly higher than that in the reactant mixtures. FTIR spectra of nanocomposites evidenced the presence of filler-polymer interactions. Inherent viscosity (η inh) determinations indicated that the average molar mass of polymer in methylated and fluorinated derivatives was lower than neat PS, and were in agreement with calorimetric glass transition temperature (T g) measurements. Degradations were performed into a thermobalance, in the scanning mode, at 10 °C min?1, and the temperatures at 5 % mass loss (T 5 %), of various nanocomposites were determined. The effects of various substituents of the POSS phenyl group on the thermal stability of nanocomposites were evaluated. The results were discussed and interpreted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号