首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
化学   52篇
晶体学   1篇
数学   7篇
物理学   22篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   10篇
  2011年   11篇
  2010年   1篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   9篇
  2004年   3篇
  2003年   2篇
  2000年   2篇
  1998年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有82条查询结果,搜索用时 750 毫秒
81.
A Monte Carlo study is presented to discuss the influence of the side-chain topology on the enhancement of the persistence length of a molecular bottle-brush in a dilute athermal solution due to the excluded volume interactions between the side chains. The structures investigated consisted of freely jointed backbones of 100 hard spheres (beads) of diameter 1 to which 50 equally flexible side chains were grafted. The diameter of the side-chain beads was varied from 1 to 3 in the same units. For every given size of the side-chain bead, the length of the side chains was varied from 4 to 20 beads. The ratio between the persistence length and the bottle-brush diameter, which is the determining factor for lyotropic behavior of conventional semi-flexible chains, was found to be almost independent of the side-chain length. At the same time, it was found to increase considerably with increasing size of the side-chain beads, suggesting that by a proper choice of the chemistry lyotropic behavior of molecular bottle-brushes due to excluded-volume interactions between the side chains might be achieved. Moreover, relatively short side chains can be used since the side chain length has only a minor influence on the ratio between the persistence length and the diameter. These findings are in a good agreement with recent experimental observations.  相似文献   
82.
The structural and thermodynamic properties of tethered polymer layers formed by spreading diblock copolymers at a solid surface or at a fluid‐fluid interface are studied using a molecular mean‐field theory. The role of the anchoring block in determining the properties of the tethered polymer layer is studied in detail. It is found that both the anchoring and the tethered blocks are very important in determining the phase behavior of the polymer layer. The structures of the coexisting phases, the phase boundaries and the stability of the layer are found to depend on the ratio of molecular weight between the two blocks, the polymer‐interface (surface) interactions and the strength of the interactions between the two blocks. The different phase transitions found are related to experimental observations. The properties of the polymer layers at coexistence reflect the block that is the dominant driving force for phase separation. The ability of the tethered polymer layers, under different conditions, to control protein adsorption to surfaces is also studied. It is found that the most important factors determining the ability of a polymer layer to reduce the equilibrium amount of proteins adsorbed to a surface are the surface coverage of polymer and the surface‐polymer interactions. The polymer chain length plays only a secondary role. For the kinetic control, however, it is found that the potential of mean‐force, and thus the early stages of adsorption, depends strongly on polymer molecular weight. Further, it is found that the molecular factors determining the ability of the tethered polymer layer to reduce the equilibrium amount of protein adsorption are different than those that control the kinetic behavior. Comparisons with experimental observations are presented. The predictions of the theory are in very good agreement with the measured adsorption isotherms. Guidelines for building optimal surface protection for protein adsorption, both kinetic and thermodynamic, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号