首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
化学   52篇
晶体学   1篇
数学   7篇
物理学   22篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   10篇
  2011年   11篇
  2010年   1篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   9篇
  2004年   3篇
  2003年   2篇
  2000年   2篇
  1998年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有82条查询结果,搜索用时 562 毫秒
31.
Monodisperse gas microbubbles, encapsulated with a shell of photopolymerizable diacetylene lipids and phospholipids, were produced by microfluidic flow focusing, for use as ultrasound contrast agents. The stability of the polymerized shell microbubbles against both aggregation and gas dissolution under physiological conditions was studied. Polyethylene glycol (PEG) 5000, which was attached to the diacetylene lipids, was predicted by molecular theory to provide more steric hindrance against aggregation than PEG 2000, and this was confirmed experimentally. The polymerized shell microbubbles were found to have higher shell-resistance than nonpolymerizable shell microbubbles and commercially available microbubbles (Vevo MicroMarker). The acoustic stability under 7.5 MHz ultrasound insonation was significantly greater than that for the two comparison microbubbles. The acoustic stability was tunable by varying the amount of diacetylene lipid. Thus, our polymerized shell microbubbles are a promising platform for ultrasound contrast agents.  相似文献   
32.
Weighted network congestion games are a natural model for interactions involving finitely many non-identical users of network resources, such as road segments or communication links. However, in spite of their special form, these games are not fundamentally special: every finite game can be represented as a weighted network congestion game. The same is true for the class of (unweighted) network congestion games with player-specific costs, in which the players differ in their cost functions rather than their weights. The intersection of the two classes consists of the unweighted network congestion games. These games are special: a finite game can be represented in this form if and only if it is an exact potential game.  相似文献   
33.
In this paper, we show by means of numerical simulations how new patterns can emerge in a system with wave instability when a unidirectional advective flow (plug flow) is added to the system. First, we introduce a three variable model with one activator and two inhibitors with similar kinetics to those of the Oregonator model of the Belousov-Zhabotinsky reaction. For this model, we explore the type of patterns that can be obtained without advection, and then explore the effect of different velocities of the advective flow for different patterns. We observe standing waves, and with flow there is a transition from out of phase oscillations between neighboring units to in-phase oscillations with a doubling in frequency. Also mixed and clustered states are generated at higher velocities of the advective flow. There is also a regime of "waving Turing patterns" (quasi-stationary structures that come close and separate periodically), where low advective flow is able to stabilize the stationary Turing pattern. At higher velocities, superposition and interaction of patterns are observed. For both types of patterns, at high velocities of the advective field, the known flow distributed oscillations are observed.  相似文献   
34.
35.
We have investigated the interactions between single-walled carbon nanotubes, coated with polymer chains end-grafted to the tubes, and planar surfaces. By proper functionalization of the grafted polymers' free ends, we show how to obtain an attractive interaction that can be used to immobilize the tube at a desired distance from the surface. We demonstrate how the strength and distance of the minimal interaction can be controlled by the proper choice of polymer chain length, surface coverage, and type of functional end-group.  相似文献   
36.
The adsorption of mixtures of charged proteins on charged surfaces is studied using a molecular theory. The theory explicitly treats each of the molecular species in the system. The mixtures treated in this work are composed by two types of proteins, dissociated monovalent salt and solvent. The intermolecular and surface interactions include electrostatic, van der Waals and excluded volume. The theory is more general than the Poisson-Boltzmann approach since the size and shape of all the molecular components are explicitly treated. The studies presented in this work concentrate on the differences in competitive adsorption when the proteins in the mixtures differ in their total charge or in the spatial distribution of the charges within the proteins. In the cases of mixtures that differ in the number of charges it is found, as expected, that the particles with the larger charge adsorb in excess. The ratio of adsorbed proteins can vary by 3-5 orders of magnitude by varying the bulk salt concentration from 1 to 100 mM. This is the result of an increase on the adsorption of the proteins with larger charge and an even stronger decrease on the adsorption of the less charged particles. The simple model systems studied provide guidelines on how to separate charge ladder proteins and proteins with different charge distributions. In the case of proteins with the same total charge but different charge distribution, it is found that the partition of the proteins depends upon the bulk composition. However, in general the particles with the highest localized charge tend to adsorb more on the surfaces. The proteins are adsorbed in one or more layers. The structure of the second adsorbed layer is determined mostly by the bulk properties of the solution. In all cases it is found that in the range of salt concentrations studied the number of adsorbed ions from the salt is very large. This is due to competitive adsorption with the proteins and their very low bulk concentration compared to the salt. The limitations of the theory and directions for improvement of the approach as well as the model for the proteins are discussed.  相似文献   
37.
The relaxation dynamics of water-rich glycerol-water mixtures is studied by broadband dielectric spectroscopy (BDS) at 173-323 K and differential scanning calorimetry (DSC) at 138-313 K. These data indicate the existence of the critical concentration of 40 mol % glycerol. In the studied temperature range for water-rich glycerol mixtures, the two states of water (ice and interfacial water) are observed in addition to water in the mesoscopic 40 mol % glycerol-water domains. The possible kinetics of water exchange between different water states is discussed in order to explain the mechanism of the broad melting behavior observed by DSC.  相似文献   
38.
A molecular model is proposed of a bilayer consisting of fully saturated dipalmitoylphosphatidylcholine (DPPC) and mono-unsaturated dioleoylphosphatidylcholine (DOPC). The model not only encompasses the constant density within the hydrophobic core of the bilayer, but also the tendency of chain segments to align. It is solved within self-consistent field theory. A model bilayer of DPPC undergoes a main-chain transition to a gel phase, while a bilayer of DOPC does not do so above zero degrees centigrade because of the double bond which disrupts order. We examine structural and thermodynamic properties of these membranes and find our results in reasonable accord with experiment. In particular, order-parameter profiles are in good agreement with NMR experiments. A phase diagram is obtained for mixtures of these lipids in a membrane at zero tension. The system undergoes phase separation below the main-chain transition temperature of the saturated lipid. Extensions to the ternary DPPC, DOPC, and cholesterol system are outlined.  相似文献   
39.
We employ a molecular mean-field theory to quantitatively understand the sizes, surfactant surface coverage, and size fluctuations of gold nanocrystals decorated with thiol surfactants of different chain lengths. Our model assumes that surfactant-coated nanoparticles are equilibrium structures. We find that packing constraints experienced by the surfactant tails are less significant for more curved (smaller) particles. This effect enables us to rationalize the experimental observations/deductions that the thiol coverage per unit area increases with decreasing particle size. The reduction of surface coverage with increasing size also explains the fact that size polydispersity increases with increasing nanoparticle size. We find that increasing the length of the surfactants results in larger nanoparticles.  相似文献   
40.
The addition of polyethylene glycol to the Belousov-Zhabotinsky reaction increases the frequency of oscillations, which in an extended system causes a transition from traveling to standing waves. A further increase in frequency causes another transition to bulk oscillations. The standing waves are composed of two domains, which oscillate out of phase with a small delay between them, the delay being smaller as the frequency of oscillations is increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号