首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
化学   45篇
数学   2篇
物理学   35篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1996年   7篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
11.
When the Fe(CO)4 and M(CO)5 (M=Cr, W) groups are co-ordinated in C3v and C4v fashion, respectively, in transition metal carbonyl cluster species they contain two sets of non-symmetry related carbonyl groups. In the application of the spherical harmonic model (SHM) to the interpretation of the infrared spectra of these compounds it proves necessary first to treat these as for a normal, isolated, M(CO)4 or M(CO)5 group and then apply the SHM. This recognition gives insights into the general application of the SHM.  相似文献   
12.
13.
A fully encapsulated Pt 4 tetrahedron in an incomplete tetrahedron of 36 nickel atoms is present in [Ni36Pt4(CO)45]6− ( 1 ; see picture for the metal framework), which is obtained as an inseparable mixture with [Ni37Pt4(CO)46]6− ( 2 ) by reaction of [Ni6(CO)12]2− with K2[PtCl4]. The trimethylbenzylammonium salts of 1 and 2 cocrystallize in a 1:1 ratio. The additional Ni atom of 2 caps the truncated vertex of 1 .  相似文献   
14.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   
15.
16.
The nu(CO) vibrational spectra of planar transition cluster carbonyls containing M(CO)(4) groups are studied. It is possible to anticipate qualitatively, both for the infrared and Raman, the band intensity changes associated with increasing metallic nature of the cluster. These enable a unification of the band patterns shown by the species reported. As for (idealized) spherical clusters, the spherical harmonic model (SHM), suitably modified, becomes of more general applicability as cluster size increases, although for smaller species the tensor harmonic model (THM) makes a contribution.  相似文献   
17.
The new Au8{Fe(CO)4}4(P^P)2 and Au6Cu2{Fe(CO)4}4(P^P)2 (P^P=dppm, dppe) neutral cluster compounds were isolated in good yields by condensation of the [Au3{Fe(CO)4}2(P^P)]- anions with Au(SEt2)Cl and CuCl, respectively, and have been characterized by IR, NMR and microanalyses. The molecular structures of Au8{Fe(CO)4}4(dppe)2 and Au6Cu2{Fe(CO)4}4(dppe)2 have been determined by X-ray diffraction studies. Both molecules adopt a stereogeometry of the heavy atoms consisting of a triangulated and corrugated ribbon twisted around the elongation direction. Contrary to the expectations the latter displays the two copper atoms in the sites of highest connectivity. This implies that site exchange between copper and gold occurs during the synthesis.  相似文献   
18.
Reaction of [NBu4]2[Pt9(CO)18] with the soft Lewis acid CdCl2 gives the [Pt9(CO)18(micro3-CdCl2)2]2- adduct, which self-assembles upon crystallization into a 1-D [[Pt9(CO)18(micro3-CdCl2)2]2-]infinity polymer via the formation of chloride bridges.  相似文献   
19.

Background

Antisense oligonucleotide (AON)-mediated exon skipping is a powerful tool to manipulate gene expression. In the present study we investigated the potential of exon skipping by local injection in the central nucleus of the amygdala (CeA) of the mouse brain. As proof of principle we targeted the splicing of steroid receptor coactivator-1 (SRC-1), a protein involved in nuclear receptor function. This nuclear receptor coregulator exists in two splice variants (SRC-1a and SRC-1e) which display differential distribution and opposing activities in the brain, and whose mRNAs differ in a single SRC-1e specific exon.

Methods

For proof of principle of feasibility, we used immunofluorescent stainings to study uptake by different cell types, translocation to the nucleus and potential immunostimulatory effects at different time points after a local injection in the CeA of the mouse brain of a control AON targeting human dystrophin with no targets in the murine brain. To evaluate efficacy we designed an AON targeting the SRC-1e-specific exon and with qPCR analysis we measured the expression ratio of the two splice variants.

Results

We found that AONs were taken up by corticotropin releasing hormone expressing neurons and other cells in the CeA, and translocated into the cell nucleus. Immune responses after AON injection were comparable to those after sterile saline injection. A successful shift of the naturally occurring SRC-1a:SRC-1e expression ratio in favor of SRC-1a was observed, without changes in total SRC-1 expression.

Conclusions

We provide a proof of concept for local neuropharmacological use of exon skipping by manipulating the expression ratio of the two splice variants of SRC-1, which may be used to study nuclear receptor function in specific brain circuits. We established that exon skipping after local injection in the brain is a versatile and useful tool for the manipulation of splice variants for numerous genes that are relevant for brain function.  相似文献   
20.
The reaction of [Rh(7)(CO)(16)](3-) with SnCl(2).2H(2)O in a 1 : 1 molar ratio under N(2) results in the formation of the new heterometallic cluster, [Rh(12)Sn(CO)(27)](4-), in very high yield (ca. 86%). Further controlled additions of SnCl(2).2H(2)O, or solutions of HCl, or [RhCl(COD)](2), give [Rh(12)(micro-Cl)(2)Sn(CO)(23)](4-). Similarly, addition of HBr to [Rh(12)Sn(CO)(27)](4-) gives the related cluster [Rh(12)(micro-Br)(2)Sn(CO)(23)](4-). Notably, if the addition of SnCl(2).2H(2)O to [Rh(12)Sn(CO)(27)](4-) is carried out under a CO atmosphere, the reaction takes a different course and leads to the formation of the new cluster, [Rh(12)Sn(micro(3)-RhCl)(CO)(27)](4-). All the above clusters have been shown by single-crystal X-ray diffraction studies to have a metal framework based on an icosahedron, which is centred by the unique Sn atom. Their chemical reactivity and (13)C-{(103)Rh} HMQC NMR spectroscopic characterization are also reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号