首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1574篇
  免费   69篇
  国内免费   9篇
化学   1016篇
晶体学   12篇
力学   54篇
数学   110篇
物理学   460篇
  2024年   2篇
  2023年   6篇
  2022年   23篇
  2021年   26篇
  2020年   23篇
  2019年   30篇
  2018年   20篇
  2017年   24篇
  2016年   50篇
  2015年   45篇
  2014年   55篇
  2013年   110篇
  2012年   122篇
  2011年   105篇
  2010年   88篇
  2009年   64篇
  2008年   118篇
  2007年   114篇
  2006年   105篇
  2005年   99篇
  2004年   62篇
  2003年   69篇
  2002年   70篇
  2001年   34篇
  2000年   33篇
  1999年   14篇
  1998年   18篇
  1997年   11篇
  1996年   23篇
  1995年   26篇
  1994年   7篇
  1993年   11篇
  1992年   4篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1970年   1篇
  1968年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有1652条查询结果,搜索用时 46 毫秒
911.
Diffusion of beryllium was performed on dark blue sapphire from China and Australia. The samples were heated with beryllium as a dopant in a furnace at 1 600 ℃ for 42 h in air. After beryllium diffusion, samples were analyzed by UV-Vis, FTIR, and WD-XRF spectroscopy. After heat-treatment with Be as a catalyst, the irons of the ferrous state were changed to the ferric state. Therefore, reaction of Fe2+/Ti4+ IVCT was decreased. The absorption peaks at 3 309 cm-1 attributed to OH radical were disappeared completely due to carry out heat treatment. Consequently, the intensity of absorption band was decreased in the visible region. Especially, decreased absorption band in the vicinity of 570 nm was responsible for the lighter blue color. Therefore, we confirmed that the dark blue sapphires from China and Australia were changed to vivid blue.  相似文献   
912.
In urban areas, the quantity of exhaust particles from vehicle emissions is tremendous and has been regarded as the main contributor to particulate matter (PM) pollution. Recently, the nano-sized PM on public health has begun to raise the attention. The increased toxicity of nanoparticulate can be largely explained by their small size, high airborne concentration, extensive surface area and high content of organic carbon and transition metals. We have attempted to address the toxicity of nano sized-particlulate matter by comparing various particulates including micro-SiO2 (mSiO2), nano-SiO2 (nSiO2), micro-TiO2 (mTiO2), and nano-TiO2 (nTiO2) in RAW264.7 cells and in vivo. The cell viability of all particulates decreased dose dependently. 24-h incubation with nSiO2 demonstrated apoptosis in RAW264.7 using Annexin-V binding immunofluorescent microscopy, but not in any other particulates. In vivo, cytotoxicity of nanosized was higher than micro-sized particulates. As higher the concentration of particulates, the more pulmonary injury and neutrophilic infiltration were observed in nano-sized than micro-sized particulates, respectively. Particularly, 5.0 mg/kg of mTiO2 never shows any increase of neutrophile even with high cellularity of total cells and macrophages. From these results, we suggested that particulate-induced respiratory toxicity be influenced by component, size, and dose of particulates including the characteristic nature of the target cells in vitro and in vivo.  相似文献   
913.
Recently, mass spectrometry has been applied to studies of hydrogen exchange of backbone amides, allowing analysis of large proteins at physiological concentrations. Low resolution spatial information is obtained by digesting proteins after exchange into D2O, using electrospray ionization liquid chromatography/mass spectrometry (ESI-LC/MS) to measure deuteration by mass increases of resulting peptides. This study develops modeling paradigms to increase resolution, using the signal transduction kinase ERK2 as a prototype for larger, less stable proteins. In-exchange data for peptides were analyzed by nonlinear least squares and a maximum entropy method, distinguishing amides into fast, intermediate, slow, and nonexchanging classes. Analysis of completely nonexchanging or in-exchanging peptides and peptides with sequence overlaps showed that nonexchanging amides were generally hydrogen bonded and sterically constrained or buried > or = 2.2 A from the protein surface, while fast exchanging hydrogens were generally exposed at the protein surface. In order to more fully understand the intermediate and slow exchanging classes, an empirical model was developed by analyzing published exchange rates in cytochrome c. The model correlated protection factors with a combined dependency on surface accessibility, hydrogen bond length, and position of residues from alpha helix ends. Together with analysis of partial proteolytic products, the derived rules for exchange allowed modeling of exchange behavior of peptides. Substantial deviation from the predicted rates in some cases suggested a role for conformational freedom in regulating fast and intermediate exchanging amides.  相似文献   
914.
The current study highlights the fabrication of drug delivery system by utilizing 200 nm mesoporous silica nanoparticles (MSNPs) with 4-nm pore size, as a carrier system for delivery ginsenoside compound K (CK) and Rh2 to enhance their efficacy. The two pharmacologically imperative ginsenosides, CK and Rh2, were loaded to the MSNPs to prepare MSNPs-CK and MSNPs-Rh2, respectively. A fluorescein isothiocyanate (FITC) fluorescent dye was combined in the MSNPs carrier system, in order to trace the cellular uptake of ginsenoside-loaded nanoparticles for in vitro studies. Following purification, the so-prepared MSNPs-CK-FITC and MSNPs-Rh2-FITC were characterized by several analytical techniques, which includes, high-pressure liquid chromatography (HPLC), 1H NMR, field emission transmission electron microscopy (FE-TEM), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). In vitro cytotoxicity assay in HaCaT skin cells, A549 lung cancer cells, HepG2 liver carcinoma cells, and HT-29 colon cancer cell lines were tested for MSNPs-CK-FITC and MSNPs-Rh2-FITC. The results demonstrate the excellent biocompatibility of nanoparticles in normal cell lines (HaCaT skin cells) and anticancer efficacy in all the tested cancer cell lines at 10-μM concentration. Additionally, the in vitro anti-inflammatory behavior of MSNPs-CK-FITC and MSNPs-Rh2-FITC were checked in RAW264.7 (murine macrophage) cell lines. The outcomes showed higher anti-inflammatory efficacy of MSNPs-CK-FITC and MSNPs-Rh2-FITC as compared to standard ginsenosides CK and Rh2 in RAW264.7 cell lines. Thus, with 200 nm MSNPs carrier system for the delivery ginsenosides CK and Rh2, a high amount of loading and increasing in vitro pharmacological efficacies of ginsenosides were realized. This study may provide useful insights for designing and improving the applicability of MSNPs for ginsenoside delivery.  相似文献   
915.
Conventional CdTe solar cells have a CdS window layer, in which an absorption loss of photons with more than 2.4 eV occurs through the CdS layer. A thinner CdS layer was applied to enhance light transmission and a ZnO buffer layer with a band gap of 3.3 eV was introduced to suppress shunting through the thinner CdS window layer. A 100-nm thick ZnO layer sputter-deposited at 300 °C had uniform coverage on a transparent conductive oxide (TCO) after a subsequent high-temperature process. The ZnO layer was effective in preventing shunting through the CdS window layer so that the open-circuit voltage and fill factor of the CdTe solar cells were recovered and the short-circuit current was enhanced over that of the conventional CdTe solar cell. In the ZnO/CdS/CdTe configuration, the short-circuit current was further improved throughout the visible wavelength region by replacing the Cu-metal contact with a Cu solution contact. As a result the short-circuit current from 21.7 to 26.1 mA/cm2 and the conversion efficiency of the CdTe solar cell increased from 12 to 15% without antireflective coating. Our result indicates that the Cu solution back contact is a critical factor for achieving a higher cell efficiency in addition to ZnO buffer layer.  相似文献   
916.
Three planar CH3NH3PbI3 (MAPbI3) solar cells having the same structure except a hole‐extraction layer (HEL) showed distinctive difference in operation characteristics. Analysis of frequency‐dependent capacitance and dielectric‐loss spectra of the three MAPbI3 devices showed two types of recombination‐loss channels with different time constants that we attributed respectively to interface and bulk defects. Discrepancy in defect formation among the three devices with a HEL of PEDOT:PSS, NiOx, or Cu‐doped NiOx was not surprising because grain‐size distribution and crystalline quality of MAPbI3 can be affected by surface energy and morphology of underlying HELs. We were able to quantify interface and bulk defects in these MAPbI3solar cells based on systematic and simultaneous simulations of capacitance and dielectric‐loss spectra, and current–voltage characteristics by using the device simulator SCAPS.

  相似文献   

917.
918.
The diffusion processes of water molecules into polymer films (PMMA/PS homopolymers and random copolymers) in contact with liquid water were investigated using gravimetric methods and X-ray reflectivity (XRR) analysis. Methods of water contact and XRR measurement were designed for studying the systems in the nonequilibrium state of diffusion. Gravimetric measurements confirmed the Fickian diffusion behavior of films in contact with water. Vertical density distributions in PMMA and methylmethacrylate-rich copolymer films demonstrate the existence of a water-rich layer at the interface. However, with further absorption of water into the film, the overall density increased throughout the film. The results suggest that the diffusion of water into the polymer film occurs to recover density uniformity with a high concentration of water molecules at the surface. Some XRR data for the PS- and styrene-rich copolymer films could not be fit and converted to a vertical density distribution because of their huge diffusion coefficients. However, the reflectivity curves for these films and the vertical density distribution after sufficient water contact suggested that the surfaces of these films were commonly diffused after water contact. Atomic force microscopy (AFM) analysis demonstrated that the surface roughness of these films actually increased with water content.  相似文献   
919.
Common substitution positions of flavonols are at C-5 and C-7; 6-substituted flavonol derivatives are rarely found in natural sources. Here, we report complete assignments of 1H and 13C chemical shifts of eight flavonol derivatives including four 6-substituted flavonols.  相似文献   
920.
Multiporphyrin dendrimers are among the most promising architectures to mimic the oxygenic light-harvesting complex because of their structural similarities and synthetic convenience. The overall geometries of dendrimers are determined by the core structure, the type of dendron, and the number of generations of interior repeating units. The rigid core and bulky volume of exterior porphyrin units in multiporphyrin dendrimers give rise to well-ordered three-dimensional structures. As the number of generations of interior repeating units increases, however, the overall structures of dendrimers become disordered and randomized due to the flexibility of the repeating units. To reveal the relationship between molecular structure and processes of excitation-energy migration in multiporphyrin dendrimers, we calculated the molecular structure and measured the time-resolved transient absorption and fluorescence anisotropy decays for various hexaarylbenzene-anchored polyester zinc(II) porphyrin dendrimers along with three types of porphyrin dendrons as references. We found that the congested two-branched type dendrimers exhibit more efficient energy migration processes than one- or three-branched type dendrimers because of multiple energy migration pathways, and the three-dimensional packing efficiency of dendrimers strongly depends on the type of dendrons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号