首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4377篇
  免费   210篇
  国内免费   25篇
化学   3217篇
晶体学   39篇
力学   121篇
数学   228篇
物理学   1007篇
  2024年   6篇
  2023年   28篇
  2022年   104篇
  2021年   97篇
  2020年   68篇
  2019年   101篇
  2018年   67篇
  2017年   69篇
  2016年   152篇
  2015年   152篇
  2014年   191篇
  2013年   295篇
  2012年   410篇
  2011年   378篇
  2010年   255篇
  2009年   215篇
  2008年   318篇
  2007年   276篇
  2006年   268篇
  2005年   235篇
  2004年   176篇
  2003年   172篇
  2002年   167篇
  2001年   78篇
  2000年   56篇
  1999年   41篇
  1998年   30篇
  1997年   21篇
  1996年   32篇
  1995年   38篇
  1994年   13篇
  1993年   20篇
  1992年   8篇
  1991年   13篇
  1990年   9篇
  1989年   7篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1979年   3篇
  1976年   4篇
  1974年   4篇
  1969年   1篇
  1968年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有4612条查询结果,搜索用时 15 毫秒
991.
Crizotinib is a clinically approved tyrosine kinase inhibitor for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EML4-ALK fusion. Crizotinib was originally developed as an inhibitor of MET (HGF receptor), which is involved in the metastatic cascade. However, little is known about whether crizotinib inhibits tumor metastasis in NSCLC cells. In this study, we found that crizotinib suppressed TGFβ signaling by blocking Smad phosphorylation in an ALK/MET/RON/ROS1-independent manner in NSCLC cells. Molecular docking and in vitro enzyme activity assays showed that crizotinib directly inhibited the kinase activity of TGFβ receptor I through a competitive inhibition mode. Cell tracking, scratch wound, and transwell migration assays showed that crizotinib simultaneously inhibited TGFβ- and HGF-mediated NSCLC cell migration and invasion. In addition, in vivo bioluminescence imaging analysis showed that crizotinib suppressed the metastatic capacity of NSCLC cells. Our results demonstrate that crizotinib attenuates cancer metastasis by inhibiting TGFβ signaling in NSCLC cells. Therefore, our findings will help to advance our understanding of the anticancer action of crizotinib and provide insight into future clinical investigations.Subject terms: Non-small-cell lung cancer, Targeted therapies  相似文献   
992.
Inflammation is an immune response to cellular damage caused by various stimuli (internal or external) and is essential to human health. However, excessive inflammatory responses may be detrimental to the host. Considering that the existing drugs for the treatment of inflammatory diseases have various side effects, such as allergic reactions, stomach ulcers, and cardiovascular problems, there is a need for research on new anti-inflammatory agents with low toxicity and fewer side effects. As 4′,6-dimethoxyisoflavone-7-O-β-d-glucopyranoside (wistin) is a phytochemical that belongs to an isoflavonoid family, we investigated whether wistin could potentially serve as a novel anti-inflammatory agent. In this study, we found that wistin significantly reduced the production of nitric oxide and intracellular reactive oxygen species in lipopolysaccharide-stimulated RAW 264.7 cells. Moreover, wistin reduced the mRNA levels of pro-inflammatory enzymes (inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2)) and cytokines (interleukin (IL)-1β and IL-6) and significantly reduced the protein expression of pro-inflammatory enzymes (iNOS and COX-2). Furthermore, wistin reduced the activation of the nuclear factor-κB and p38 signaling pathways. Together, these results suggest that wistin is a prospective candidate for the development of anti-inflammatory drugs.  相似文献   
993.
Over the years, great attention has been paid to coumarin derivatives, a set of versatile molecules that exhibit a wide variety of biological activities and have few toxic side effects. In this study, we investigated the antidiabetic potential of 6-formyl umbelliferone (6-FU), a novel furanocoumarin isolated from Angelica decursiva. Numerous pharmacological activities of 6-FU have been previously reported; however, the mechanism of its antidiabetic activity is unknown. Therefore, we examined the action of 6-FU on a few candidate-signaling molecules that may underlie its antidiabetic activity, including its inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation (IC50 = 1.13 ± 0.12, 58.36 ± 1.02, 5.11 ± 0.21, and 2.15 ± 0.13 μM, respectively). A kinetic study showed that 6-FU exhibited mixed-type inhibition against α-glucosidase and HRAR and competitive inhibition of PTP1B. Docking simulations of 6-FU demonstrated negative binding energies and close proximity to residues in the binding pockets of those enzymes. We also investigated the molecular mechanisms underlying 6-FU’s antidiabetic effects. 6-FU significantly increased glucose uptake and decreased PTP1B expression in insulin-resistant C2C12 skeletal muscle cells. Moreover, 6-FU (0.8–100 μM) remarkably inhibited the formation of fluorescent AGEs in glucose-fructose-induced human serum albumin glycation over the course of 4 weeks. The findings clearly indicate that 6-FU will be useful in the development of multiple target-oriented therapeutic modalities for the treatment of diabetes and diabetes-related complications.  相似文献   
994.
‘Seolhyang’ strawberry is harvested before it is fully ripened and treated with CO2 to extend the shelf-life. However, the volatile changes in the ‘Seolhyang’ strawberry after short-term CO2 treatment have not been investigated, although the volatile profile is an important quality attribute. Herein, we investigated the effect of short-term high CO2 treatment on the changes in the composition of volatile compounds in ‘Seolhyang’ strawberries at two ripening stages (i.e., half-red and bright-red) during cold storage using headspace solid-phase microextraction and gas chromatography-mass spectrometry. Furthermore, the effect of CO2 treatment on fruit quality with respect to the aroma was investigated. A total of 30 volatile compounds were identified. Storage increased the volatile compound concentrations, and the total concentration of volatiles in the CO2-treated strawberries was lower than that of the untreated strawberries during storage. The production of some characteristic strawberry volatiles (e.g., 4-methoxy-2,5-dimethyl-3(2H)-furanone) was inhibited in CO2-treated strawberries. However, CO2 treatment helped maintain the concentrations of hexanal and 2-hexenal, which are responsible for the fresh odor in strawberries. Interestingly, CO2 treatment suppressed the production of off-odor volatiles, acetaldehyde, and hexanoic acid during strawberry storage. Thus, short-term CO2 treatment may help maintain the fresh aroma of strawberries during cold storage.  相似文献   
995.
The objective of this study was to determine whether (5S)-5-(4-benzyloxy-3,5-dimethoxy-phenyl)-5,9-dihydro-8H-furo [3’,4’:6,7] naphtho [2,3-d] [1,3]dioxol-6-one (JNC-1043), which is a novel chemical derivative of β-apopicropodophyllin, acts as a novel potential anticancer reagent and radiosensitizer in colorectal cancer (CRC) cells. Firstly, we used MTT assays to assess whether JNC-1043 could inhibit the cell proliferation of HCT116 and DLD-1 cells. The IC50 values of these cell lines were calculated as 114.5 and 157 nM, respectively, at 72 h of treatment. Using doses approximating the IC50 values, we tested whether JNC-1043 had a radiosensitizing effect in the CRC cell lines. Clonogenic assays revealed that the dose-enhancement ratios (DER) of HCT116 and DLD-1 cells were 1.53 and 1.25, respectively. Cell-counting assays showed that the combination of JNC-1043 and γ-ionizing radiation (IR) enhanced cell death. Treatment with JNC-1043 or IR alone induced cell death by 50~60%, whereas the combination of JNC-1043 and IR increased this cell death by more than 20~30%. Annexin V-propidium iodide assays showed that the combination of JNC-1043 and IR increased apoptosis by more 30~40% compared to that induced by JNC-1043 or IR alone. DCFDA- and MitoSOX-based assays revealed that mitochondrial ROS production was enhanced by the combination of JNC-1043 and IR. Finally, we found that suppression of ROS by N-acetylcysteine (NAC) blocked the apoptotic cell death induced by the combination of JNC-1043 and IR. The xenograft model also indicated that the combination of JNC-1043 and IR increased apoptotic cell death in tumor mass. These results collectively suggest that JNC-1043 acts as a radiosensitizer and exerts anticancer effects against CRC cells by promoting apoptosis mediated by mitochondrial ROS.  相似文献   
996.
997.
能源和环境问题成为制约未来可持续发展的关键问题之一,因此,针对不同电催化反应设计电催化剂变得越来越重要.电催化剂因其能量效率高、制备简单和易操作等优点,而应用于可再生能源的相关反应(如水分解和人工光合作用)中.明确不同反应电催化剂的设计原理,深入理解其在相关反应中的催化机理,可进一步优化催化剂性能.本文综述了扫描电化学显微镜(SECM)应用于电催化反应的历程、关键方法以及一些代表性的工作,阐明了电催化剂的工作机理以推进电催化剂的设计.本文还介绍了为提高SECM的空间分辨率而尝试的纳米尺寸电极方面的新进展,分享了纳米电极在以前研究无法涉及的单一催化实体方面的应用.  相似文献   
998.
The Y‐shaped, low molecular mass, hole‐conductor (HC), acidic coadsorbents 4‐{3,7‐bis[4‐(2‐ethylhexyloxy)phenyl]‐10H‐phenothiazin‐10‐yl}benzoic acid ( PTZ1 ) and 4‐{3,7‐bis[4‐(2‐ethylhexyloxy)phenyl]‐10H‐phenothiazin‐10‐yl}biphenyl‐4‐carboxylic acid ( PTZ2 ) were developed. Owing to their tuned and negative‐shifted HOMO levels (vs. NHE), they were used as HC coadsorbents in dye‐sensitized solar cells (DSSCs) to improve cell performance through desired cascade‐type hole‐transfer processes. Their detailed functions as HC coadsorbents in DSSCs were investigated to obtain evidence for the desired cascade‐type hole‐transfer processes. They have multiple functions, such as preventing π–π stacking of dye molecules, harvesting light of shorter wavelengths, and faster dye regeneration. By using PTZ2 as the tailor‐made HC coadsorbent on the TiO2 surface with the organic dye NKX2677, an extremely high conversion efficiency of 8.95 % was achieved under 100 mW cm?2 AM 1.5G simulated light (short‐circuit current JSC=16.56 mA cm?2, open‐circuit voltage VOC=740 mV, and fill factor of 73 %). Moreover, JSC was increased by 13 %, VOC by 27 % and power‐conversion efficiency by 49 % in comparison to an NKX2677‐based DSSC without an HC coadsorbent. This is due to the HC coadsorbent having a HOMO energy level well matched to that of the NKX‐2677 dye to induce the desired cascade‐type hole‐transfer processes, which are associated with a slower charge recombination, fast dye regeneration, effective screening of liquid electrolytes, and an induced negative shift of the quasi‐Fermi level of the electrode. Thus, this new class of Y‐shaped, low molecular weight, organic, HC coadsorbents based on phenothiazine carboxylic acid derivatives hold promise for highly efficient organic DSSCs.  相似文献   
999.
We developed the photo‐crosslinkable hydrogel‐based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo‐crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular‐shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel‐based 3D microfluidic device, showing that 53–75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo‐crosslinkable hydrogel‐based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.  相似文献   
1000.
A cyclo[2]carbazole[2]pyrrole (2) consisting of two carbazoles and two pyrroles has been synthesized by directly linking the carbazole 1- and 8-carbon atoms to the pyrrole α-carbon atoms. Macrocycle 2 is an extensively conjugated 16-membered macrocyclic ring that is fixed in a pseudo-1,3-alternate conformation. This provides a preorganized anion binding site consisting of two pyrrole subunits. 1H NMR spectroscopic analysis revealed that only the two diagonally opposed pyrrole NH protons, as opposed to the carbazole protons, take part in anion binding. Nevertheless, cyclo[2]carbazole[2]pyrrole 2 binds representative anions with higher affinity in CD2Cl2 than calix[4]pyrrole (1), a well-studied non-conjugated tetrapyrrole macrocycle that binds anions via four pyrrolic NH hydrogen bond interactions. On the basis of computational studies, the higher chloride anion affinity of receptor 2 relative to 1 is rationalized in terms of a larger binding energy and a lower host strain energy associated with anion complexation. In the presence of excess fluoride or bicarbonate anions, compound 2 loses two pyrrolic NH protons to produce a stable dianionic macrocycle [2–2H]2− displaying a quenched fluorescence.

Less is more: two NH hydrogen bond donors in a preorganized receptor provide greater anion affinity than the four NH moieties present in the classic anion receptor, calix[4]pyrrole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号