首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1719篇
  免费   76篇
  国内免费   5篇
化学   1375篇
晶体学   21篇
力学   30篇
数学   68篇
物理学   306篇
  2024年   2篇
  2023年   19篇
  2022年   37篇
  2021年   41篇
  2020年   46篇
  2019年   52篇
  2018年   27篇
  2017年   23篇
  2016年   50篇
  2015年   46篇
  2014年   75篇
  2013年   133篇
  2012年   131篇
  2011年   152篇
  2010年   88篇
  2009年   87篇
  2008年   123篇
  2007年   118篇
  2006年   109篇
  2005年   83篇
  2004年   74篇
  2003年   56篇
  2002年   58篇
  2001年   21篇
  2000年   23篇
  1999年   13篇
  1998年   9篇
  1997年   13篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   3篇
  1989年   4篇
  1987年   6篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1980年   2篇
  1979年   6篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
  1968年   3篇
  1943年   1篇
  1940年   1篇
排序方式: 共有1800条查询结果,搜索用时 13 毫秒
81.
Total synthesis of methyl l-daunosaminide hydrochloride was achieved from readily available l-tyrosine. Key steps in this strategy were palladium(0) catalyzed stereoselective intramolecular oxazine formation and catalytic hydrogenation of oxazine intermediate. This paper reported 1H and 13C NMR data of α- and β-anomer of methyl l-daunosaminide hydrochloride.  相似文献   
82.
Aromatase (CYP 19A1) is a key steroidogenic enzyme that catalyzes the conversion of androgen to estrogen. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for aromatase inhibitor screening was developed and validated. The substrate androstenedione was incubated with human CYP 19A1 supersomes in the presence of NADPH for 30 min, and estrone formation was determined by LC-MS/MS analysis. Cortisone was used as internal standard. The incubation mixture was extracted using a liquid-liquid extraction method with ethyl acetate. Chromatographic separation was achieved using a C18 column (3.0?×?50 mm, 2.7 μm) with a mobile phase consisting of 0.1 % formic acid/acetonitrile adopting gradient elution at a flow rate of 0.4 mL/min. The mass spectrometer was operated in positive electrospray ionization mode. The precursor-product ion pairs used for multiple reaction monitoring were m/z 287→97 (androstenedione), m/z 271?→?159 (estrone), and m/z 361?→?163 (IS, cortisone). The developed method met the required criteria for the validation of bioanalytical methods. The validated method was successfully applied to evaluate aromatase inhibitory activity of plants extracts of Simaroubaceae.
Figure
Determination of estrone formation by LC-MS/MS analysis for aromatase inhibitor screening  相似文献   
83.
The intensity of the linear dichroism (LD) in the absorption region of DNA (about 260 nm) decreased with time in the presence of [Fe(EDTA)]2+ (EDTA=ethylenediaminetetraacetic acid), H2O2, and ascorbate. The decrease in the LD signal indicated either an increase in flexibility, a shortening of the DNA stem, or both, owing to oxidative cleavage, and was best described by the difference between the two single‐exponential‐decay curves, thereby suggesting the involvement of two sequential first‐order reactions. The fast reaction was assigned to cleavage of one of two DNA strands, which increased the flexibility of the DNA. The slow reaction corresponded to cleavage at or near the first cleavage site, thereby shortening the DNA stem. The presence of an intercalator, including ethidium, propidium, 9‐aminoacridine, and proflavine, inhibited the first step of the cleavage reaction. One of the possible reasons for the observed inhibition might be a change in the DNA conformation near the intercalation site. Intercalation caused an unwinding and elongation of the DNA and resulted in changes in the location of the H atoms of the sugar moiety, which is known to be the main site at which hydroxyl radicals react.  相似文献   
84.
The development of selective electrocatalysts for the chlorine evolution reaction (CER) is majorly restrained by a scaling relation between the OCl and OOH adsorbates, rendering that active CER catalysts are also reasonably active in the competing oxygen evolution reaction (OER). While theory predicts that the OCl versus OOH scaling relation can be circumvented as soon as the elementary reaction steps in the CER comprise the Cl rather than the OCl adsorbate, it was demonstrated recently that PtN4 sites embedded in a carbon nanotube follow this theoretical prediction. Advanced experimental analyses illustrate that the PtN4 sites also reveal a different reaction kinetics compared to the industrial benchmark of dimensionally stable anodes (DSA). A reverse Volmer–Heyrovsky mechanism was identified, in which the rate-determining Volmer step for small overpotentials is followed by the kinetically limiting Heyrovsky step for larger overpotentials. Since the PtN4 sites excel DSA in terms of activity and chlorine selectivity, we suggest the Cl intermediate as well as the reverse Volmer–Heyrovsky mechanism as the design criteria for the development of next-generation electrode materials beyond DSA.  相似文献   
85.
The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.  相似文献   
86.
Since ancient times, various herbs have been used in Asia, including Korea, China, and Japan, for wound healing and antiaging of the skin. In this study, we manufactured and chemically analyzed a novel distillate obtained from a fermented mixture of nine anti-inflammatory herbs (Angelica gigas, Lonicera japonica, Dictamnus dasycarpus Turcz., D. opposita Thunb., Ulmus davidiana var. japonica, Hordeum vulgare var. hexastichon Aschers., Xanthium strumarium L., Cnidium officinale, and Houttuynia cordata Thunb.). The fermentation of natural plants possesses beneficial effects in living systems. These activities are attributed to the chemical conversion of the parent plants to functional constituents which show more potent biological activities. In our current study, the distillate has been manufactured after fermenting the nine oriental medical plants with Lactobacillus fermentum, followed by distilling. We analyzed the chemical ingredients involved in the distillate and evaluated the effects of topical application of the distillate on ultraviolet B (UVB)-induced skin damage in Institute of Cancer Research (ICR) mice. Topical application of the distillate significantly ameliorated the macroscopic and microscopic morphology of the dorsal skin against photodamage induced by UVB radiation. Additionally, our current results showed that topical application of the distillate alleviated collagen disruption and reduced levels of proinflammatory cytokines (tumor necrosis factor alpha and interleukin 1 β expressions) in the dorsal skin against UVB radiation. Taken together, our current findings suggest that the distillate has a potential to be used as a material to develop a photoprotective adjuvant.  相似文献   
87.
Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1β production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1β and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.  相似文献   
88.
Adsorption of dimethyl disulfide (DMDS) on gold colloidal nanoparticle surfaces has been examined to check its binding mechanism. Differently from previous results, DMDS molecules adsorbed on the gold surface at high concentration showed the S–S stretching band at 500 cm−1 in surface-enhanced Raman scattering (SERS) spectra, which indicates the presence of intact adsorption of DMDS molecules. However, it was found that the S–S bond of disulfides was easily cleaved on the gold surface at low concentration. These behaviors were not observed for diethyl disulfide (DEDS) or diphenyl disulfide (DPDS). Our results indicate that DMDS molecules with the shortest alkyl chains on the gold surface can be inserted into self-assembled monolayers (SAMs) without the S–S bond cleavage during self-assembly due to insufficient lateral van der Waals interaction and the low adsorption activity of disulfides, whereas DEDS with longer alkyl chains or DPDS with the weak disulfide bond dissociation energy would not. These unusual DMDS adsorption behaviors were examined by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). We also compared the bonding dissociation energy of the S–S bonds of various disulfides by means of a density functional theory (DFT) calculation.  相似文献   
89.
In this communication, TiO2 nanocrystalline thin films synthesized by a room temperature (27 degrees C) chemical dip process. To our knowledge, this is first report of the preparation of nanoscale rutile TiO2 particles from common inorganic salt at such low temperature. Interestingly, unprecedented dynamic color change accompanies with titanium dioxide grain size, which can be seen with the naked eye that generated curiosity in our mind to check UV-vis absorption, where significant changes were observed. The room temperature synthesized thin films of rutile titanium dioxide make it a potential candidate for high-compatibility material, which can be used in artificial heart valves.  相似文献   
90.
Poly(D,L‐lactide‐co‐glycolide) 50:50 (PLGA)/graphene oxide (GO) nanocomposite films were prepared with various GO weight fractions. A significant enhancement of mechanical properties of the PLGA/GO nanocomposite films was obtained with GO weight fractions. The incorporation of only 5 wt% of GO resulted in an ~2.5‐fold and ~4.7‐fold increase in the tensile strength and Young's modulus of PLGA, respectively. The thermomechanical behaviors of composite films were investigated by dynamic mechanical analysis. Results indicated that the values of Tg and storage moduli of the PLGA/GO composites were higher than those of the pristine PLGA. The improvement in oxygen barrier properties of composites was presumably attributed to the filler effect of the randomly dispersed GO throughout the PLGA matrix. In this work, we also studied in vitro biodegradation behavior. PLGA/GO composite films were hydrolyzed at 37°C for periods up to 49 days. Because of the presence of GO nanosheets, degradation of composite films took place more slowly with increasing GO amounts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号