首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6326篇
  免费   290篇
  国内免费   56篇
化学   3739篇
晶体学   63篇
力学   251篇
综合类   2篇
数学   1453篇
物理学   1164篇
  2023年   51篇
  2022年   128篇
  2021年   170篇
  2020年   173篇
  2019年   201篇
  2018年   186篇
  2017年   173篇
  2016年   274篇
  2015年   204篇
  2014年   282篇
  2013年   449篇
  2012年   435篇
  2011年   475篇
  2010年   256篇
  2009年   291篇
  2008年   341篇
  2007年   287篇
  2006年   219篇
  2005年   207篇
  2004年   204篇
  2003年   167篇
  2002年   153篇
  2001年   96篇
  2000年   93篇
  1999年   53篇
  1998年   41篇
  1997年   56篇
  1996年   72篇
  1995年   62篇
  1994年   49篇
  1993年   53篇
  1992年   45篇
  1991年   46篇
  1990年   44篇
  1989年   28篇
  1988年   38篇
  1987年   45篇
  1986年   44篇
  1985年   39篇
  1984年   49篇
  1983年   29篇
  1982年   44篇
  1981年   37篇
  1980年   32篇
  1979年   40篇
  1978年   36篇
  1977年   33篇
  1976年   35篇
  1975年   24篇
  1974年   26篇
排序方式: 共有6672条查询结果,搜索用时 15 毫秒
181.
Hung M  Stanbury DM 《Inorganic chemistry》2005,44(10):3541-3550
The oxidation of cysteine by [Mo(CN)(8)](3-) in deoxygenated aqueous solution at a moderate pH is strongly catalyzed by Cu(2+), to the degree that impurity levels of Cu(2+) are sufficient to dominate the reaction. Dipicolinic acid (dipic) is a very effective inhibitor of this catalysis, such that with 1 mM dipic, the direct oxidation can be studied. UV-vis spectra and electrochemistry show that [Mo(CN)(8)](4-) is the Mo-containing product. Cystine and cysteinesulfinate are the predominant cysteine oxidation products. The stoichiometric ratio (Deltan(Mo(V))/Deltan(cysteine)) of 1.4 at pH 10.8 is consistent with this product distribution. At pH 1.5, the reaction is quite slow and yields intractable kinetics. At pH 4.5, the rates are much faster and deviate only slightly from pseudo-first-order behavior. With 2 mM PBN (N-phenyl-tert-butyl nitrone) present at pH 4.5, the reaction rate is about 20% less and shows excellent pseudo-first-order behavior, but the stoichiometric ratio is not significantly changed. The rates also display a significant specific cation effect. In the presence of spin-trap PBN, the kinetics were studied over the pH range 3.48-12.28, with [Na(+)] maintained at 0.09-0.10 M. The rate law is -d[Mo(V)]/dt = k[cysteine](tot)[Mo(V)], with k = {2(k(b)K(a1)K(a2)[H(+)] + k(c)K(a1)K(a2)K(a3))}/([H(+)](3) + K(a1)[H(+)](2) + K(a1)K(a2)[H(+)] + K(a1)K(a2)K(a3)), where K(a1), K(a2), and K(a3) are the successive acid dissociation constants of HSCH(2)CH(NH(3)(+))CO(2)H. Least-squares fitting yields k(b) = (7.1 +/- 0.4) x 10(4) M(-1) s(-1) and k(c) = (2.3 +/-0.2) x 10(4) M(-1) s(-1) at mu = 0.1 M (NaCF(3)SO(3)) and 25 degrees C. A mechanism is inferred in which k(b) and k(c) correspond to electron transfer to Mo(V) from the thiolate forms of anionic and dianionic cysteine.  相似文献   
182.
183.
High-performance liquid chromatography (HPLC) was combined with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to develop a sensitive and selective method for the quantitative measurement of N(7)-(2-hydroxyethyl)guanine (N(7)-HEG) adducts in DNA obtained from ethylene oxide-exposed biological samples. Selected reaction monitoring (SRM) was used as the detection mode while the fragmentation product ion at m/z 152 generated from the precursor protonated N(7)-HEG (m/z 196) was monitored. The detection limits for N(7)-HEG were estimated by twofold serial dilution and determined to be 4 fmol in neat standard solution and 16 fmol when a matrix effect is considered. When the mass spectrometer was operated in the selected ion monitoring mode using only the first quadrupole (without MS/MS function), the detection limits increased to 128 fmol and 1 pmol (when matrix effect is considered), respectively. A good linear correlation (R(2) = 0.999) was observed for signal intensities obtained by injecting 16 fmol--33 pmol of N(7)-HEG into the HPLC/ESI-MS/MS system. Hep G2 cells were incubated for 8 h with medium containing various concentrations of ethylene oxide (ranging from 0.05 to 5.0 mM). A dose-response relationship was established, indicating that the adduct formation increases with the exposure level. The method shows potential, although the detection limit needs to be lowered for practical applications, for use in monitoring N(7)-HEG formation in other biological systems.  相似文献   
184.
Approximately 9% of the 9.7 billion bushels of corn harvested in the United States was used for fuel ethanol production in 2002, half of which was prepared for fermentation by dry grinding. The University of Illinois has developed a modified dry grind process that allows recovery of the fiber fractions prior to fermentation. We report here on conversion of this fiber (Quick Fiber [QF]) to ethanol. QF was analyzed and found to contain 32%wt glucans and 65%wt total carbohydrates. QF was pretreated with dilute acid and converted into ethanol using either ethanologenic Escherichia coli strain FBR5 or Saccharomyces cerevisiae. For the bacterial fermentation the liquid fraction was fermented, and for the yeast fermentation both liquid and solids were fermented. For the bacterial fermentation, the final ethanol concentration was 30 g/L, a yield of 0.44 g ethanol/g of sugar(s) initially present in the hydrolysate, which is 85% of the theoretical yield. The ethanol yield with yeast was 0.096 gal/bu of processed corn assuming a QF yield of 3.04 lb/bu. The residuals from the fermentations were also evaluated as a source of corn fiber oil, which has value as a nutraceutical. Corn fiber oil yields were 8.28%wt for solids recovered following prtetreatment.  相似文献   
185.
Low molecular weight epoxidized natural rubber has been crosslinked within seconds by UV irradiation in the presence of a triarylsulfonium salt. The photoinitiated cationic ring-opening polymerization was studied quantitatively by infrared spectroscopy and shown to proceed with surprisingly long kinetic chains in such solid medium. The high conversion (60%) needed for complete insolubilization, together with the presence of tetrahydrofuran structures, argue in favor of an intramolecular polymerization process involving neighboring epoxy groups. The photoinitiator concentration has a strong influence on the rate and extent of the reaction, as well as on the depth of cure profile. Because of an efficient dark process, close to 100% conversion was reached upon storage of the irradiated elastomer at ambient, with a concomitant increase of the gel fraction and the polymer hardness. The grafting of pendent acrylate groups onto the polymer chain leads to a three-fold decrease of the initial rate of polymerization of the epoxide. The photocuring of natural rubber bearing both epoxy and acrylate groups generates a dual polymer network which combines the properties of the two moieties. © 1995 John Wiley & Sons, Inc.  相似文献   
186.
Absolute free energies of hydration have been computed for 13 diverse organic molecules using partial charges derived from ab initio 6-31G* wave functions. Both Mulliken charges and charges fit to the electrostatic potential surface (EPS) were considered in conjunction with OPLS Lennard–Jones parameters for the organic molecules and the TIP4P model of water. Monte Carlo simulations with statistical perturbation theory yielded relative free energies of hydration. These were converted to absolute quantities through perturbations to reference molecules for which absolute free energies of hydration had been obtained previously in TIP4P water. The average errors in the computed absolute free energies of hydration are 1.1 kcal/mol for the 6-31G* EPS charges and 4.0 kcal/mol for the Mulliken charges. For the EPS charges, the largest individual errors are under 2 kcal/mol except for acetamide, in which case the error is 3.7 kcal/mol. The hydrogen bonding between the organic solutes and water has also been characterized. © John Wiley & Sons, Inc.  相似文献   
187.
Correction for pile-up losses in the amplifier is possible by the dead-time fraction indicator of the ADC in case of long-lived radionuclides. If the dead-time meter has been calibrated, an accuracy of 1.5% is feasible up to a dead-time fraction of 25%. The precision decreases from 1.5% at 10% dead-time fraction to 3% at a deadtime fraction of 30%.  相似文献   
188.
Gaseous CF(3)(+) interchanges F(+) for O with simple carbonyl compounds. CF(3)(+) reacts with propionaldehyde in the gas phase to produce (CH(3))(2)CF(+) via two competing pathways. Starting with 1-(13)C-propionaldehyde, the major pathway (80%) produces (CH(3))(2)CF(+) with the carbon label in one of the methyl groups. The minor pathway (20%) produces (CH(3))(2)CF(+) with the carbon label in the central position. The relative proportions of these two pathways are measured by (19)F NMR analysis of the neutral CH(3)CF=CH(2) produced by deprotonation of (CH(3))(2)CF(+) at <10(-)(3) Torr in an electron bombardment flow (EBFlow) reactor. Formation of alkene in which carbon is directly bonded to fluorine means that (in the minor product, at least) an F(+) for O transposition occurs via adduct formation followed by 1,3-atom transfer and then isomerization of CH(3)CH(2)CHF(+) to the more stable (CH(3))(2)CF(+). Use of CF(4) as a chemical ionization (CI) reagent gas leads to CF(3)(+) adduct ions for a variety of ketones, in addition to isoelectronic transposition of F(+) for O. Metastable ion decompositions of the adduct ions yield the metathesis products. Decompositions of fluorocycloalkyl cations formed in this manner give evidence for the same kinds of rearrangements as take place in CH(3)CH(2)CHF(+). Density functional calculations confirm that F(+) for O metathesis takes place via addition of CF(3)(+) to the carbonyl oxygen followed by transposition via a four-member cyclic transition state. A computational survey of the effects of different substituents in a series of aldehydes and acyclic ketones reveals no systematic variation of the energy of the transition state as a function of thermochemistry, but the Hammond postulate does appear to be obeyed in terms of progress along the reaction coordinate. Bond lengths corresponding to the central barrier correlate with overall thermochemistry of the F(+) for O interchange, but in a sense opposite to what might have been expected: the transition state becomes more product-like as the metathesis becomes increasingly exothermic. This reversal of the naive interpretation of the Hammond postulate is accounted for by the relative positions of the potential energy wells that precede and follow the central barrier.  相似文献   
189.
Sequence-specific DNA recognition can be achieved by oligonucleotides that bind to the major groove of oligopyrimidine x oligopurine sequences. These intermolecular structures could be used to modulate gene expression and to create new tools for molecular biology. Here we report the synthesis and biochemical characterization of triple helix-specific DNA cleaving reagents. It is based on the previously reported triplex-specific ligands, benzo[e]pyridoindole (BePI) and benzo[g]pyridoindole (BgPI), covalently attached to ethylenediaminotetraacetic acid (EDTA). In the presence of iron, a reducing agent and molecular oxygen, BgPI-EDTA x FeII but not BePI-EDTA x FeII induced a double-stranded cut in a plasmid DNA at the single site where a triplex-forming oligonucleotide binds. At single nucleotide resolution, it was found that upon triplex formation BePI-EDTA x FeII led to cleavage of the pyrimidine strand and protection of the purine strand. BgPI-EDTA x FeII cleaved both strands with similar efficiency. The difference in cleavage efficiency between the two conjugates was rationalized by the location of the EDTA x FeII moiety with respect to the grooves of DNA (major groove: BePI-EDTA x FeII, minor groove: BgPI-EDTA x FeII). This work paves the way to the development of a new class of triple helix directed DNA cleaving reagents. Such molecules will be of interest for sequence-specific DNA cleavage and for investigating triple-helical structures, such as H-DNA, which could play an important role in the control of gene expression in vivo.  相似文献   
190.
A detailed thermochemical analysis of the alpha-cleavage and decarbonylation reactions of acetone and several ketodiesters was carried out with the B3LYP/6-31G* density functional method. The heats of formation of several ground-state ketones and radicals were calculated at 298 K to determine bond dissociation energies (BDE) and radical stabilization energies (RSE) as a function of substituents. Results show that the radical-stabilizing abilities of the ketone substituents play a very important role on the thermodynamics of the alpha-cleavage and decarbonylation steps. An excellent correlation between calculated values and previous experimental observations suggests that photochemical alpha-cleavage and decarbonylation in crystals should be predictable from knowledge of excitation energies and the RSE of the substituent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号