We designed a series of 2-methylpyrimidine derivatives as new BCR-ABL inhibitors using scaffold-hopping strategy.These synthetic compounds exhibited significant inhibition against a broad spectrum of Bcr-Abl mutants including the gatekeeper T315I mutant.Compound 7u showed very potent kinase inhibitory activities against Bcr-Abl WT,Bcr-Abl E255K,Bcr-Abl Q252H,Bcr-Abl G250E and Bcr-Abl T315I,with IC50 values of 0.13 nM,0.17 nM,0.24 nM,0.19 nM and 0.65μM,respectively.This compound also displayed anti-proliferation activity against K562 cell line with an IC50 value of 1.1 nM,thus representing a new lead for further optimization. 相似文献
A facile chemical polymerization method was applied to prepare LiFePO4/C-PPy composite using Fe(III)tosylate as oxidant. The as-prepared LiFePO4/C-PPy sample with PPy content of approximately 4 wt% showed great rate capability with a discharge capacity of 115 mAh/g at 20C. High temperate cycling performance of the LiFePO4/C-PPy sample was compared with bare LiFePO4/C at 5C charge–discharge rate at 55 °C. The LiFePO4/C-PPy cathode showed superior cycling stability with an initial capacity of 155 mAh/g. Ninety percentage of this initial capacity was retained after 300 cycles, compared to 40% of that of bare LiFePO4/C. The LiFePO4/C-PPy electrode showed stable discharge plateau voltage of 3.35–3.25 V vs. Li+/Li during long term cycling. The superior performance of the LiFePO4/C-PPy electrode was due to the enhanced electrical conductivity, negligible iron dissolution and alleviated electrode cracking contributed by PPy coating. 相似文献
A highly bifunctional thiourea-tertiary amine-catalyzed enantioselective Michael addition reaction of anthrone to a wide variety of nitroalkenes has been developed, and the corresponding adducts were obtained smoothly in high yields (up to 97%) and good enantioselectivities (up to 94% ee). 相似文献
Highly hydroxylated barium titanate (BaTiO(3)) nanoparticles have been prepared via an easy and gentle approach which oxidizes BaTiO(3) nanoparticles using an aqueous solution of hydrogen peroxide (H(2)O(2)). The hydroxylated BaTiO(3) surface reacts with sodium oleate (SOA) to form oleophilic layers that greatly enhance the dispersion of BaTiO(3) nanoparticles in organic solvents such as tetrahydrofuran, toluene, and n-octane. The results of Fourier transform infrared spectroscopy confirmed that the major functional groups on the surface of H(2)O(2)-treated BaTiO(3) nanoparticles are hydroxyl groups which are chemically active, favoring chemical bonding with SOA. The results of transmission electron microscopy of SOA-modified BaTiO(3) nanoparticles suggested that the oleate molecules were bonded to the surfaces of nanoparticles and formed a homogeneous layer having a thickness of about 2 nm. Furthermore, the improved dispersion capability of the modified BaTiO(3) nanoparticles in organic solvents was verified through analytic results of its settling and rheological behaviors. 相似文献
Star-block copolymers PEI-g-(PLG-b-PEG), which consist of a hyperbranched polyethylenimine (PEI) core, a poly(l-glutamic acid) (PLG) inner shell, and a poly(ethylene glycol) (PEG) outer shell, were synthesised and evaluated as nanocarriers for cationic drugs. The synthesised star-block copolymers were characterised by 1H NMR, gel permeation chromatography (GPC), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Crystal violet (CV), as a model cationic dye, and doxorubicin hydrochloride (DOX), as a model anticancer drug, could be efficiently entrapped by the synthesised star-block copolymers at physiological pH as a result of electrostatic interactions between the cationic guest molecules and the negatively charged PLG segments in the PEI-g-(PLG-b-PEG) host. The drug–polymer complexes showed relatively high temporal stability at physiological pH and sustained release of the encapsulated drugs was observed. The entrapped model compounds demonstrated accelerated release as the pH was gradually decreased. 相似文献
CdS nanostructures with different morphologies and sizes were successfully fabricated through a facile and effective carbon-assisted thermal evaporation method. Through simply changing the positions of silicon substrates, the temperatures and the effects of carbon in different zones were modified, and thus the morphologies of CdS nanostructures were varied from multipods to nanobrushes to nanocups. These nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD) and Raman spectroscopy. Cathodoluminescence (CL) measurement shows that the as-grown CdS nanostructures display different luminescent properties. CdS multipods and nanocups show mainly green emission centered at 496 nm. However, nanobrushes exhibit predominant red emission band peaking at 711 nm. These interesting results show that carbon not only affected the growth process but also influenced the properties of CdS nanostructures. 相似文献
We report the fabrication of multiwalled carbon nanotube (MWCNT)-incorporated electrospun polyvinyl alcohol (PVA)/chitosan (CS) nanofibers with improved cellular response for potential tissue engineering applications. In this study, smooth and uniform PVA/CS and PVA/CS/MWCNTs nanofibers with water stability were formed by electrospinning, followed by crosslinking with glutaraldehyde vapor. The morphology, structure, and mechanical properties of the formed electrospun fibrous mats were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mechanical testing, respectively. We showed that the incorporation of MWCNTs did not appreciably affect the morphology of the PVA/CS nanofibers; importantly the protein adsorption ability of the nanofibers was significantly improved. In vitro cell culture of mouse fibroblasts (L929) seeded onto the electrospun scaffolds showed that the incorporation of MWCNTs into the PVA/CS nanofibers significantly promoted cell proliferation. Results from this study hence suggest that MWCNT-incorporated PVA/CS nanofibrous scaffolds with small diameters (around 160 nm) and high porosity can mimic the natural extracellular matrix well, and potentially provide many possibilities for applications in the fields of tissue engineering and regenerative medicine. 相似文献
Gastrin releasing peptide receptors (GRPRs) are one of the most interesting targets over expressed in various tumors. Due to the superior potential of the GRPR antagonist analogs, they have been studied in the tumor radio imaging and therapy field. However, typical antagonists suffered the shortcomings of no internalization and poor binding affinity which hampered their applications in radiotherapy. Therefore, we attempted to introduce Oligoarginines (cell penetrating peptides) to RM26, aiming to increase the binding affinity or even trigger the internalization of the peptides on cells. The results showed Arg6 as the most potent CPP, significantly enhanced the binding avidity of RM26 to the GRPR.
Nanocrystalline NH4ZrH(PO4)2·H2O was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O and (NH4)2HPO4 as raw materials. X-ray powder diffraction analysis showed that NH4ZrH(PO4)2·H2O was a layered compound with an interlayer distance of 1.148 nm. The thermal decomposition of NH4ZrH(PO4)2·H2O experienced four steps, which involves the dehydration of the crystal water molecule, deamination, intramolecular dehydration
of the protonated phosphate groups, and the formation of orthorhombic ZrP2O7. In the DTA curve, the three endothermic peaks and an exothermic peak, respectively, corresponding to the first three steps'
mass losses of NH4ZrH(PO4)2·H2O and crystallization of ZrP2O7 were observed. Based on Flynn–Wall–Ozawa equation and Kissinger equation, the average values of the activation energies associated
with the NH4ZrH(PO4)2·H2O thermal decomposition and crystallization of ZrP2O7 were determined to be 56.720 ± 13.1, 106.55 ± 6.28, 129.25 ± 4.32, and 521.90 kJ mol−1, respectively. Dehydration of the crystal water of NH4ZrH(PO4)2·H2O could be due to multi-step reaction mechanisms: deamination of NH4ZrH(PO4)2 and intramolecular dehydration of the protonated phosphate groups from Zr(HPO4)2 are simple reaction mechanisms. 相似文献