Enol and keto tautomers of methyl 3-oxo pentanoate could be separated on a HP-5 capillary column. The chromatographic peaks
were identified by examining characteristic mass ions arose from the corresponding enol and keto molecular ions. The study
showed that the area percentage of enol tautomer is a function of temperature of the column. Treating the column as a reactor,
the energy of activation for the on-column tautomerization could be extracted (35.1 kJ mol−1) by monitoring the loss of the enol tautomer, because the reaction is found to obey pseudo first-order kinetics. The enthalpy
and the entropy changes (ΔH = −3.98 kJ mol−1, ΔS = −7.89 J K−1mol−1) for the enol-to-keto reaction in the stationary phase were also obtained. 相似文献
The high-voltage wide-bore capillary zone electrophoresis of red blood cells was investigated. The reproducibility of the retention time (electrophoretic mobility) is excellent and the differentiation among various species is good. The peaks in the electropherogram describe the distribution of the size and/or surface charge of the cells and are therefore broad. The relationship between the peak height and the number of cells injected is good, with linear correlation coefficients better than 0.98. Details of the preparation of cell suspensions and support electrolytes are given, which is essential for obtaining reproducible results. The inner surface of FEP capillary tubing is degraded by the application of high voltage and a pause is necessary between successive experiments if good and reproducible peak shapes are to be obtained. The length of the pause increases with the number of experiments made, and finally the tubing becomes useless. Inspection of the inner surface by X-ray photoelectron spectroscopy showed the breakdown of CHF bonds, but the actual mechanism is not known. 相似文献
Twenty-one new organogermanium compounds with the formulae Ph3GeCHR1CH2CONHNHC(X)NHR2 (1) (R1=H, Ph; = Ph, p-CH3Ph, O -CH3Ph, p-ClPh, COPh, X = S, O) and (R1 = H, Ph; R2 = Ph, p-CH3Ph, o-CH3Ph, p-ClPh; X=S, O) were synthesized and characterized by elemental analysis, 1H NMR, IR, MS and X-ray diffraction techniques. Compounds l were prepared by the reactions of Ph3GeCHR1CH2CONHNH2 with R2NCX in chloroform in 77-94% yields, and 2 were obtained by refluxing l with sodium hydroxide (8%) with yields of 55-94%. 相似文献
Time resolved photoacoustic calorimetry (PAC) was applied to a study of the photolysis of a coenzyme B(12) analog 2',5'-dideoxyadenosylcobalamin, which lacks an -OH group at the 2' position of ribofuranose ring. In aqueous solution, we report for the first time the quantum yield Phi(d) (0.25+/-0.02), Co-C bond dissociation energy (BDE; 31.8+/-2.5 kcal mol(-1)) and reaction volume change deltaV(R) (6.5+/-0.5 ml mol(-1)) due to conformation changes of the corrin ring and its side chains accompanying the cleavage of the Co-C bond. These values for the analog are very similar to those for the natural cofactor. Based our results and previous studies, a possible explanation for the similarity in their structure and properties versus the large difference in their enzymatic activity is discussed. 相似文献
This study investigated the visible-light catalysis mediated by zeolite NaY on the oxidation of dyes with H2O2. The results demonstrated that zeolite NaY acts as a sink for the electron from the photo-excited dye in the heterogeneous catalysis. Furthermore, the electron can effectively activate H2O2 to produce ·OH radical that is a powerful oxidant for the oxidation of dye at room temperature. The effects of the framework topology, Si/Al ratio, and exchangeable cation of the zeolite on the oxidation of various dyes were also shown. 相似文献
Polyesterifications of adipic acid with ethylene glycol, 1,4-butanediol, and 1,6-hexanediol in the absence and presence of the foreign acid (p-toluene sulfonic acid) as catalyst were carried out under constant reaction temperatures of 140–180°C (rather than at constant oil-bath temperatures) and at ratios of diol to diacid of 0.9867–3.5880. The experimental data fit the rate equations proposed by Chen and Wu: d(RCOOR′)/dt = kaeαp(RCOOH)2(R′OH) – kh(H2O)(RCOOR′) and d(RCOOR′)/dt = kac(AH)eαp(RCOOH)(RO′H) – kh(H2O)(RCOOR′) for self-catalyzed and acid-catalyzed reactions, respectively; the data did not fit the other equations appearing in the literature. Here p is the conversion of acid, and α is the constant related to dielectric constants. The reaction rate constants and activation energies for self-catalyzed and acid-catalyzed reactions are calculated. The activation energy is found to decrease with chain length of the alkyl group of the diol. This result is consistent with that observed by Brauman and Blair using ion cyclotron resonance spectroscopy for the variation of acidity of alcohols with chain length of the alkyl group. 相似文献
Although the theories and potential applications of intermolecular multiple-quantum coherences (iMQCs) have been under active investigations for over a decade, discussion of iMQC NMR signal formation was mainly confined in the time domain. In this paper, a full line-shape theory was developed to describe iMQC signals in the frequency domain. Relevant features of the line shape, such as peak height, linewidth, and phase, were investigated in detail. Predictions based on the theory agree well with experimental and simulated results. Since radiation-damping effects always couple with iMQCs in highly polarized liquid-state NMR systems, and strongly radiation-damped signals have many spectral characteristics similar to those of iMQCs, a detailed comparison was also made between them from different spectral aspects. With detailed comparison of peak height, linewidth, and phase, this work demonstrates that the iMQC and radiation-damping phenomena result from two completely different physical mechanisms despite that both present similar signal features and coexist in highly polarized liquid-state NMR systems. 相似文献
The structures and energies of the noble gas containing anions FNgO- (Ng = He, Ar, and Kr) have been calculated by high-level ab initio calculations. The FNgO- anions were found to be deep-energy minima at the singlet electronic state, and their energies are significantly lower than those at the triplet state. High dissociation energy barriers to Ng + OF- were also predicted. The unexpected stability of the FNgO- was due to the dramatic ion-induced O=Ng bond formation. The calculated results suggested possible experimental identification of the anionic species and even some related "ionic compounds" under cryogenic conditions. 相似文献
Protonated acetamide exists as two planar conformers, the more stable anti-form (anti-1(+)) and the syn-form (syn-1(+)), DeltaG(degree) (298) (anti-->syn) = 10.8 kJ mol(-1). Collisional neutralization of 1(+) produces 1-hydroxy-1-amino-1-ethyl radicals (anti-1 and syn-1) which in part survive for 3.7 micros. The major dissociation of 1 is loss of the hydroxyl hydrogen atom (approximately 95%) which is accompanied by loss of one of the methyl hydrogen atoms (approximately 3%) and loss of the methyl group (approximately 2%). The most favorable dissociation of the OH bond is calculated to be only 34 kJ mol(1) endothermic but requires 88 kJ mol(-1) in the transition state. Other dissociations of 1, e.g., loss of one of the amide hydrogens, methyl hydrogens, and loss of ammonia are calculated to proceed through higher- energy transition states and are not kinetically competitive if proceeding from the ground doublet electronic state of 1. The unimolecular dissociation of 1 following collisional electron transfer is promoted by large Franck-Condon effects that result in 8090 kJ mol(-1) vibrational excitation in the radicals. Radicals 1 are calculated to exoergically abstract hydrogen atoms from acetamide in water, but not in the gas phase. The different reactivity is due to solvent effects that favor the products, (.)CH(2)CONH(2) and CH(3)CH(OH)NH(2), over the reactants. 相似文献